71 resultados para Nano Composites, Carbon Nanotube, Strain Sensor
Resumo:
We consider the effects of salt (sodium iodide) on pristine carbon nanotube (CNT) dispersions in an organic solvent, N-methyl-2-pyrrolidone (NMP). We investigate the molecular-scale mechanisms of ion interactions with the nanotube surface and we show how the microscopic ion-surface interactions affect the stability of CNT dispersions in NMP. In our study we use a combination of fully atomistic Molecular Dynamics simulations of sodium and iodide ions at the CNT-NMP interface with direct experiments on the CNT dispersions. In the experiments we analyze the effects of salt on the stability of the dispersions by photoluminescence (PL) and optical absorption spectroscopy of the samples as well as by visual inspection. By fully atomistic Molecular Dynamics simulations we investigate the molecular-scale mechanisms of sodium and iodide ion interactions with the nanotube surface. Our simulations reveal that both ions are depleted from the CNT surface in the CNT-NMP dispersions mainly due to the two reasons: (1) there is a high energy penalty for the ion partial desolvation at the CNT surface; (2) NMP molecules form a dense solvation layer at the CNT surface that prevents ions to come close to the CNT surface. As a result, an increase of the salt concentration increases the "osmotic" stress in the CNT-NMP system and, thus, decreases the stability of the CNT dispersions in NMP. Direct experiments confirm the simulation results: addition of NaI salt into the NMP dispersions of pristine CNTs leads to precipitation of CNTs (bundle formation) even at very small salt concentration (∼10 -3 mol L -1). In line with the simulation predictions, the effect increases with the increase of the salt concentration. Overall, our results show that dissolved salt ions have strong effects on the stability of CNT dispersions. Therefore, it is possible to stimulate the bundle formation in the CNT-NMP dispersions and regulate the overall concentration of nanotubes in the dispersions by changing the NaI concentration in the solvent. © 2012 The Royal Society of Chemistry.
Resumo:
An optical in-fiber modal interferometer-based volume strain sensor for earthquake prediction is proposed and experimentally demonstrated. The sensing element is formed by wrapping a multimode-singlemode-multimode fiber structure onto a polyurethane hollow column. Due to the modal interference between the excited guided modes in the fiber, strong interference pattern could be observed in the transmission spectrum. Theoretical analysis verifies that the resonant wavelength shifts as a result of the volume strain variation caused by the column deformation with square root relationship. Sensitivity > 3.93 pm/με within the volume strain ranging from 0 to 1300 με is also experimentally demonstrated. By taking the response of bidirectional change of volume strain and the sluggish character of the employed sensing material into consideration, the sensing system presents good repeatability and stability. © 2001-2012 IEEE.
Resumo:
We report an in-fiber laser mode locker based on carbon nanotube with n-methyl-2-pryrrolidone solvent filled in-fiber microchamber. Symmetrically femtosecond laser fabricated in-fiber microchamber with randomly oriented nanotubes assures polarization insensitive oscillation of laser mode locking. The proposed and demonstrated passively mode locked fiber laser shows higher energy soliton output. The laser has an output power of ∼29 mW (corresponding to 11 nJ energy). It shows stable soliton output with a repetition rate of ∼2.3 MHz and pulse width of ∼3.37 ps. © 2012 American Institute of Physics.
Resumo:
We present a compact, portable and low cost generic interrogation strain sensor system using a fibre Bragg grating configured in transmission mode with a vertical-cavity surface-emitting laser (VCSEL) light source and a GaAs photodetector embedded in a polymer skin. The photocurrent value is read and stored by a microcontroller. In addition, the photocurrent data is sent via Bluetooth to a computer or tablet device that can present the live data in a real time graph. With a matched grating and VCSEL, the system is able to automatically scan and lock the VCSEL to the most sensitive edge of the grating. Commercially available VCSEL and photodetector chips are thinned down to 20 µm and integrated in an ultra-thin flexible optical foil using several thin film deposition steps. A dedicated micro mirror plug is fabricated to couple the driving optoelectronics to the fibre sensors. The resulting optoelectronic package can be embedded in a thin, planar sensing sheet and the host material for this sheet is a flexible and stretchable polymer. The result is a fully embedded fibre sensing system - a photonic skin. Further investigations are currently being carried out to determine the stability and robustness of the embedded optoelectronic components. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
Here we present first investigation of polarization dynamics from a carbon nanotube mode locked erbium doped fiber laser. Both vector and polarization switching dissipative soliton have been observed. © 2014 Optical Society of America.
Resumo:
In this study we investigate salt effects on bundle formation of carbon nanotubes (CNTs) dispersed in an organic solvent, N-methyl-2-pyrrolidone (NMP). Addition of NaI salt leads to self-assembly of CNTs into well-recognizable bundles. It is possible to control the size of the CNT bundles by varying the salt concentration. © the Owner Societies 2011.
Resumo:
We have proposed and demonstrated a Q-switched Thulium doped bre laser (TDFL) with a ‘Yin-Yang’ all- bre cavity scheme based on a combination of nonlinear optical loop mirror (NOLM) and nonlinear ampli ed loop mirror (NALM). Unidirectional lasing operation has been achieved without any intracavity isolator. By using a carbon nanotube polymer composite based saturable absorber (SA), we demonstrated the laser output power of ~197 mW and pulse energy of 1.7 μJ. To the best of our knowledge, this is the highest output power from a nanotube polymer composite SA based Q-switched Thulium doped bre laser.
Resumo:
We have implemented a dynamic strain sensor using a Polymer Optical Fiber Bragg Grating (POFBG). In this paper, we have investigated an approach for making such systems cheaper through the use of easy to handle multimode fiber. A Vertical-Cavity Surface-Emitting Laser is used to decrease the cost of the interrogation system and a photodetector converts the reflected light into an electrical signal.
Resumo:
Relevant carbon-based materials, home-made carbon-silica hybrids, commercial activated carbon, and nanostructured multi-walled carbon nanotubes (MWCNT) were tested in the oxidative dehydrogenation of ethylbenzene (EB). Special attention was given to the reaction conditions, using a relatively concentrated EB feed (10 vol.% EB), and limited excess of O2 (O 2:EB = 0.6) in order to work at full oxygen conversion and consequently avoid O2 in the downstream processing and recycle streams. The temperature was varied between 425 and 475 °C, that is about 150-200 °C lower than that of the commercial steam dehydrogenation process. The stability was evaluated from runs of 60 h time on stream. Under the applied reactions conditions, all the carbon-based materials are apparently stable in the first 15 h time on stream. The effect of the gasification/burning was significantly visible only after this period where most of them fully decomposes. The carbon of the hybrids decomposes completely rendering the silica matrix and the activated carbon bed is fully consumed. Nano structured MWCNT is the most stable; the structure resists the demanding reaction conditions showing an EB conversion of ∼30% (but deactivating) with a steady selectivity of ∼80%. The catalyst stability under the ODH reaction conditions is predicted from the combustion apparent activation energies. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
A carbon nanotube (CNT)-modified microfiber Bragg grating (MFBG) is proposed to measure the refractive index with a strong enhancement of the sensitivity in the low refractive index region. The introduction of the CNT layer influences the evanescent field of the MFBG and causes modification of the reflection spectrum. With the increase of the surrounding refractive index (SRI), we observe significant attenuation to the peak of the Bragg resonance, while its wavelength remains almost unchanged. Our detailed experimental results disclose that the CNT-MFBG demonstrates strong sensitivity in the low refractive index range of 1.333-1.435, with peak intensity up to -53.4 dBm/refractive index unit, which is 15-folds higher than that of the uncoated MFBG. Therefore, taking advantage of the CNT-induced evanescent field enhancement, the reflective MFBG probe presents strong sensing capability in biochemical fields.
Resumo:
We explored the potential of a carbon nanotube (CNT) coating working in conjunction with a recently developed localized surface plasmon (LSP) device (based upon a nanostructured thin film consisting of of nano-wires of platinum) with ultra-high sensitivity to changes in the surrounding index. The uncoated LSP sensor’s transmission resonances exhibited a refractive index sensitivity of Δλ/Δn ~ -6200nm/RIU and ΔΙ/Δn ~5900dB/RIU, which is the highest reported spectral sensitivity of a fiber optic sensor to bulk index changes within the gas regime. The complete device provides the first demonstration of the chemically specific gas sensing capabilities of CNTs utilizing their optical characteristics. This is proven by investigating the spectral response of the sensor before and after the adhesion of CNTs to alkane gases along with carbon dioxide. The device shows a distinctive spectral response in the presence of gaseous CO2 over and above what is expected from general changes in the bulk refractive index. This fiber device yielded a limit of detection of 150ppm for CO2 at a pressure of one atmosphere. Additionally the adhered CNTs actually reduce sensitivity of the device to changes in bulk refractive index of the surrounding medium. The polarization properties of the LSP sensor resonances are also investigated and it is shown that there is a reduction in the overall azimuthal polarization after the CNTs are applied. These optical devices offer a way of exploiting optically the chemical selectivity of carbon nanotubes, thus providing the potential for real-world applications in gas sensing in many inflammable and explosive environments. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
Fully dense graphene nanosheet(GNS)/Al2O3 composites with homogeneously distributed GNSs of thicknesses ranging from 2.5 to 20 nm have been fabricated from ball milled expanded graphite and Al2O3 by spark plasma sintering. The percolation threshold of electrical conductivity of the as-prepared GNS/Al2O3 composites is around 3 vol.%, and this new composite outperforms most of carbon nanotube/Al2O3 composites in electrical conductivity. The temperature dependence of electrical conductivity indicated that the as-prepared composites behaved as a semimetal in a temperature range from 2 to 300 K.
Resumo:
The fabrication of in-fibre Bragg gratings (FBGs) and their application as sensors is reported. The strain and temperature characteristic results for a number of chirped and uniform gratings written into three different host fibres are presented. The static and dynamic temperature response of a commercially available temperature compensated grating is reported. A five sensor wavelength division multiplexed fibre Bragg grating strain measurement system with an interrogation rate of 25 Hz and resolution of 10 was constructed. The results from this system are presented. A novel chirped FBG interrogation method was implemented in both the 1.3 and 1.5 m telecommunication windows. Several single and dual strain sensor systems, employing this method, were constructed and the results obtained from each are reported and discussed. These systems are particularly suitable for the measurement of large strain. The results from a system measuring up to 12 m and with a potential measurement range of 30 m are reported. This technique is also shown to give an obtainable resolution of 20 over a measurement range of 5 000 for a dual sensor system. These systems are simple, robust, passive and easy to implement. They offer low cost, high speed and, in the case of multiple sensors, truly simultaneous interrogation. These advantages make this technique ideal for strain sensing in SMART structures. Systems based on this method have been installed in the masts of four superyachts. A system, based on this technique, is currently being developed for the measurement of acoustic waves in carbon composite panels. The results from an alternative method for interrogating uniform FBG sensors are also discussed. Interrogation of the gratings was facilitated by a specifically written asymmetric grating which had a 15 nm long linearly sloped spectral edge. This technique was employed to interrogate a single sensor over a measurement range of 6 m and two sensors over a range of 4.5 me. The results obtained indicated achievable resolutions of 47 and 38 respectively.
Resumo:
Carbon nanomaterials are an active frontier of research in current nanotechnology. Single wall Carbon Nanotube (SWNT) is a unique material which has already found several applications in photonics, electronics, sensors and drug delivery. This thesis presents a summary of the author’s research on functionalisation of SWNTs, a study of their optical properties, and potential for an application in laser physics. The first significant result is a breakthrough in controlling the size of SWNT bundles by varying the salt concentrations in N-methyl 2-pyrrolidone (NMP) through a salting out effect. The addition of Sodium iodide leads to self-assembly of CNTs into recognizable bundles. Furthermore, a stable dispersion can be made via addition polyvinylpyrrolidone (PVP) polymer to SWNTs-NMP dispersion, which indicates a promising direction for SWNT bundle engineering in organic solvents. The second set of experiments are concerned with enhancement of photoluminescence (PL), through the formation of novel macromolecular complexes of SWNTs with polymethine dyes with emission from enhanced nanotubes in the range of dye excitation. The effect appears to originate from exciton energy transfer within the solution. Thirdly, SWNT base-saturable absorbers (SA) were developed and applied to mode locking of fibre lasers. SWNT-based SAs were applied in both composite and liquid dispersion forms and achieved stable ultrashort generation at 1000nm, 1550nm, and 1800 nm for Ytterbium, Erbium and Thulium-doped fibre laser respectively. The work presented here demonstrates several innovative approaches for development of rapid functionalised SWNT-based dispersions and composites with potential for application in various photonic devices at low cost.
Resumo:
Self-organization of organic molecules with carbon nanomaterials leads to formation of functionalized molecular nano-complexes with advanced features. We present a study of physical and chemical properties of carbon nanotube-surfactant-indocarbocyanine dye (astraphloxin) in water focusing on aggregation of the dye and resonant energy transfer from the dye to the nanotubes. Self-assembly of astraphloxin is evidenced in absorbance and photoluminescence depending dramatically on the concentrations of both the dye and surfactant in the mixtures. We observed an appearance of new photoluminescence peaks in visible range from the dye aggregates. The aggregates characterized with red shifted photoluminescence peaks at 595, 635 and 675 nm are formed mainly due to the presence of surfactant at the premicellar concentration. The energy transfer from the dye to the nanotubes amplifying near-infrared photoluminescence from the nanotubes is not affected by the aggregation of astraphloxin molecules providing important knowledge for further development of advanced molecular nano-complexes. The aggregation with the turned-on peaks and the energy transfer with amplified photoluminescence create powerful tools of visualization and/or detection of the nanotubes in visible and near-infrared spectral range, respectively, boosting its possible applications in sensors, energy generation/storage, and healthcare.