20 resultados para Mutual Gains


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we focus on the design of bivariate EDAs for discrete optimization problems and propose a new approach named HSMIEC. While the current EDAs require much time in the statistical learning process as the relationships among the variables are too complicated, we employ the Selfish gene theory (SG) in this approach, as well as a Mutual Information and Entropy based Cluster (MIEC) model is also set to optimize the probability distribution of the virtual population. This model uses a hybrid sampling method by considering both the clustering accuracy and clustering diversity and an incremental learning and resample scheme is also set to optimize the parameters of the correlations of the variables. Compared with several benchmark problems, our experimental results demonstrate that HSMIEC often performs better than some other EDAs, such as BMDA, COMIT, MIMIC and ECGA. © 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the path-integral technique we examine the mutual information for the communication channel modeled by the nonlinear Schrödinger equation with additive Gaussian noise. The nonlinear Schrödinger equation is one of the fundamental models in nonlinear physics, and it has a broad range of applications, including fiber optical communications - the backbone of the internet. At large signal-to-noise ratio we present the mutual information through the path-integral, which is convenient for the perturbative expansion in nonlinearity. In the limit of small noise and small nonlinearity we derive analytically the first nonzero nonlinear correction to the mutual information for the channel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two new methodologies are introduced to improve inference in the evaluation of mutual fund performance against benchmarks. First, the benchmark models are estimated using panel methods with both fund and time effects. Second, the non-normality of individual mutual fund returns is accounted for by using panel bootstrap methods. We also augment the standard benchmark factors with fund-specific characteristics, such as fund size. Using a dataset of UK equity mutual fund returns, we find that fund size has a negative effect on the average fund manager’s benchmark-adjusted performance. Further, when we allow for time effects and the non-normality of fund returns, we find that there is no evidence that even the best performing fund managers can significantly out-perform the augmented benchmarks after fund management charges are taken into account.