25 resultados para Muscle-bone functional unit


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although muscle atrophy is common to a number of disease states there is incomplete knowledge of the cellular mechanisms involved. In this study murine myotubes were treated with the phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA) to evaluate the role of protein kinase C (PKC) as an upstream intermediate in protein degradation. TPA showed a parabolic dose-response curve for the induction of total protein degradation, with an optimal effect at a concentration of 25 nM, and an optimal incubation time of 3 h. Protein degradation was attenuated by co-incubation with the proteasome inhibitor lactacystin (5 μM), suggesting that it was mediated through the ubiquitin-proteasome proteolytic pathway. TPA induced an increased expression and activity of the ubiquitin-proteasome pathway, as evidenced by an increased functional activity, and increased expression of the 20S proteasome α-subunits, the 19S subunits MSS1 and p42, as well as the ubiquitin conjugating enzyme E214k, also with a maximal effect at a concentration of 25 nM and with a 3 h incubation time. There was also a reciprocal decrease in the cellular content of the myofibrillar protein myosin. TPA induced activation of PKC maximally at a concentration of 25 nM and this effect was attenuated by the PKC inhibitor calphostin C (300 nM), as was also total protein degradation. These results suggest that stimulation of PKC in muscle cells initiates protein degradation through the ubiquitin-proteasome pathway. TPA also induced degradation of the inhibitory protein, I-κBα, and increased nuclear accumulation of nuclear factor-κB (NF-κB) at the same time and concentrations as those inducing proteasome expression. In addition inhibition of NF-κB activation by resveratrol (30 μM) attenuated protein degradation induced by TPA. These results suggest that the induction of proteasome expression by TPA may involve the transcription factor NF-κB. © 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ubiquitin-proteasome proteolytic pathway plays a major role in degradation of myofibrillar proteins in skeletal muscle during cancer cachexia. The end-product of this pathway is oligopeptides and these are degraded by the extralysomal peptidase tripeptidyl-peptidase II (TPPII) together with various aminopeptidases to form tripeptides and amino acids. To investigate if a relationship exists between the activity of the proteasome and TPPII, functional activities have been measured in gastrocnemius muscle of mice bearing the MAC16 tumour, and with varying extents of weight loss. TPPII activity was quantitated using the specific substrate Ala-Ala-Phe-7-amido-4-methylcoumarin, while proteasome activity was determined as the 'chymotrypsin-like' enzyme activity. Both proteasome proteolytic activity and TPPII activity increased in parallel with increasing weight loss, reaching a maximum at 16% weight loss, after which there was a progressive decrease in activity for both proteases with increasing weight loss. In murine myotubes, proteolysis-inducing factor, which is a sulphated glycoprotein produced by cachexia-inducing tumours, induced an increase in activity of both proteasome and TPPII, with an identical dose-response curve, and both activities were inhibited by eicosapentaenoic acid. These results suggest that the activities of both the proteasome and TPPII are regulated in a parallel manner in cancer cachexia, and that both are induced by the same factor and probably have the same intracellular signalling pathways and transcription factors. © 2004 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In animal models, transplantation of bone marrow stromal cells (MSC) into the spinal cord following injury enhances axonal regeneration and promotes functional recovery. How these improvements come about is currently unclear. We have examined the interaction of MSC with neurons, using an established in vitro model of nerve growth, in the presence of substrate-bound extracellular molecules that are thought to inhibit axonal regeneration, i.e., neural proteoglycans (CSPG), myelin associated glycoprotein (MAG) and Nogo-A. Each of these molecules repelled neurite outgrowth from dorsal root ganglia (DRG) in a concentration-dependent manner. However, these nerve-inhibitory effects were much reduced in MSC/DRG co-cultures. Video microscopy demonstrated that MSC acted as "cellular bridges" and also "towed" neurites over the nerve-inhibitory substrates. Whereas conditioned medium from MSC cultures stimulated DRG neurite outgrowth over type I collagen, it did not promote outgrowth over CSPG, MAG or Nogo-A. These findings suggest that MSC transplantation may promote axonal regeneration both by stimulating nerve growth via secreted factors and also by reducing the nerve-inhibitory effects of the extracellular molecules present.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon monoxide (CO) has emerged as a vascular homeostatic molecule that prevents balloon angioplasty-induced stenosis via antiproliferative effects on vascular smooth muscle cells. The effects of CO on reendothelialization have not been evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background context Transplantation of bone marrow cells into spinal cord lesions promotes functional recovery in animal models, and recent clinical trials suggest possible recovery also in humans. The mechanisms responsible for these improvements are still unclear. Purpose To characterize spinal cord motor neurite interactions with human bone marrow stromal cells (MSCs) in an in vitro model of spinal cord injury (SCI). Study design/setting Previously, we have reported that human MSCs promote the growth of extending sensory neurites from dorsal root ganglia (DRG), in the presence of some of the molecules present in the glial scar, which are attributed with inhibiting axonal regeneration after SCI. We have adapted and optimized this system replacing the DRG with a spinal cord culture to produce a central nervous system (CNS) model, which is more relevant to the SCI situation. Methods We have developed and characterized a novel spinal cord culture system. Human MSCs were cocultured with spinal motor neurites in substrate choice assays containing glial scar-associated inhibitors of nerve growth. In separate experiments, MSC-conditioned media were analyzed and added to spinal motor neurites in substrate choice assays. Results As has been reported previously with DRG, substrate-bound neurocan and Nogo-A repelled spinal neuronal adhesion and neurite outgrowth, but these inhibitory effects were abrogated in MSC/spinal cord cocultures. However, unlike DRG, spinal neuronal bodies and neurites showed no inhibition to substrates of myelin-associated glycoprotein. In addition, the MSC secretome contained numerous neurotrophic factors that stimulated spinal neurite outgrowth, but these were not sufficient stimuli to promote spinal neurite extension over inhibitory concentrations of neurocan or Nogo-A. Conclusions These findings provide novel insight into how MSC transplantation may promote regeneration and functional recovery in animal models of SCI and in the clinic, especially in the chronic situation in which glial scars (and associated neural inhibitors) are well established. In addition, we have confirmed that this CNS model predominantly comprises motor neurons via immunocytochemical characterization. We hope that this model may be used in future research to test various other potential interventions for spinal injury or disease states. © 2014 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many studies have accounted for whole body vibration effects in the fields of exercise physiology, sport and rehabilitation medicine. Generally, surface EMG is utilized to assess muscular activity during the treatment; however, large motion artifacts appear superimposed to the raw signal, making sEMG recording not suitable before any artifact filtering. Sharp notch filters, centered at vibration frequency and at its superior harmonics, have been used in previous studies, to remove the artifacts. [6, 10] However, to get rid of those artifacts some true EMG signal is lost. The purpose of this study was to reproduce the effect of motor-unit synchronization on a simulated surface EMG during vibratory stimulation. In addition, authors mean to evaluate the EMG power percentage in those bands in which are also typically located motion artifact components. Model characteristics were defined to take into account two main aspect: the muscle MUs discharge behavior and the triggering effects that appear during local vibratory stimulation. [7] Inter-pulse-interval, was characterized by a polimodal distribution related to the MU discharge frequency (IPI 55-80ms, σ=12ms) and to the correlation with the vibration period within the range of ±2 ms due to vibration stimulus. [1, 7] The signals were simulated using different stimulation frequencies from 30 to 70 Hz. The percentage of the total simulated EMG power within narrow bands centered at the stimulation frequency and its superior harmonics (± 1 Hz) resulted on average about 8% (± 2.85) of the total EMG power. However, the artifact in those bands may contain more than 40% of the total power of the total signal. [6] Our preliminary results suggest that the analysis of the muscular activity of muscle based on raw sEMG recordings and RMS evaluation, if not processed during vibratory stimulation may lead to a serious overestimation of muscular response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aims to reproduce the effect of motor-unit synchronization on surface EMG recordings during vibratory stimulation to highlight vibration evoked muscle activity. The authors intended to evaluate, through numerical simulations, the changes in surface EMG spectrum in muscles undergoing whole body vibration stimulation. In some specific bands, in fact, vibration induced motion artifacts are also typically present. In addition, authors meant to compare the simulated EMGs with respect to real recordings in order to discriminate the effect of synchronization of motor units discharges with vibration frequencies from motion artifacts. Computations were performed using a model derived from previous studies and modified to consider the effect of vibratory stimulus, the motor unit synchronization and the endplates-electrodes relative position on the EMG signal. Results revealed that, in particular conditions, synchronization of MUs' discharge generates visible peaks at stimulation frequency and its harmonics. However, only a part of the total power of surface EMGs might be enclosed within artifacts related bands (±1. Hz centered at the stimulation frequency and its superior harmonics) even in case of strong synchronization of motor units discharges with the vibratory stimulus. © 2013 Elsevier Ireland Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Electrosurgery units are widely employed in modern surgery. Advances in technology have enhanced the safety of these devices, nevertheless, accidental burns are still regularly reported. This study focuses on possible causes of sacral burns as complication of the use of electrosurgery. Burns are caused by local densifications of the current, but the actual pathway of current within patient's body is unknown. Numerical electromagnetic analysis can help in understanding the issue. Methods: To this aim, an accurate heterogeneous model of human body (including seventy-seven different tissues), electrosurgery electrodes, operating table and mattress was build to resemble a typical surgery condition. The patient lays supine on the mattress with the active electrode placed onto the thorax and the return electrode on his back. Common operating frequencies of electrosurgery units were considered. Finite Difference Time Domain electromagnetic analysis was carried out to compute the spatial distribution of current density within the patient's body. A differential analysis by changing the electrical properties of the operating table from a conductor to an insulator was also performed. Results: Results revealed that distributed capacitive coupling between patient body and the conductive operating table offers an alternative path to the electrosurgery current. The patient's anatomy, the positioning and the different electromagnetic properties of tissues promote a densification of the current at the head and sacral region. In particular, high values of current density were located behind the sacral bone and beneath the skin. This did not occur in the case of non-conductive operating table. Conclusion: Results of the simulation highlight the role played from capacitive couplings between the return electrode and the conductive operating table. The concentration of current density may result in an undesired rise in temperature, originating burns in body region far from the electrodes. This outcome is concordant with the type of surgery-related sacral burns reported in literature. Such burns cannot be immediately detected after surgery, but appear later and can be confused with bedsores. In addition, the dosimetric analysis suggests that reducing the capacity coupling between the return electrode and the operating table can decrease or avoid this problem. © 2013 Bifulco et al.; licensee BioMed Central Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vibration treatment by oscillating platforms is more and more employed in the fields of exercise physiology and bone research. The rationale of this treatment is based on the neuromuscular system response elicited by vibration loads. surface Electromyography (EMG) is largely utilized to assess muscular response elicited by vibrations and Root Mean Square of the electromyography signals is often used as a concise quantitative index of muscle activity; in general, EMG envelope or RMS is expected to increase during vibration. However, it is well known that during surface bio-potential recording, motion artifacts may arise from relative motion between electrodes and skin and between skin layers. Also the only skin stretch, modifying the internal charge distribution, results in a variation of electrode potential. The aim of this study is to highlight the movements of muscles, and the succeeding relevance of motion artifacts on electrodes, in subjects undergoing vibration treatments. EMGs from quadriceps of fifteen subjects were recorded during vibration at different frequencies (15-40 Hz); Triaxial accelerometers were placed onto quadriceps, as close as possible to muscle belly, to monitor motion. The computed muscle belly displacements showed a peculiar behavior reflecting the mechanical properties of the structures involved. Motion artifact related to the impressed vibration have been recognized and related to movement of the soft tissues. In fact large artifacts are visible on EMGs and patellar electrodes recordings during vibration. Signals spectra also revealed sharp peaks corresponding to vibration frequency and its harmonics, in accordance with accelerometers data. © 2008 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Drosophila melanogaster genome contains only one CPT1 gene (Jackson, V. N., Cameron, J. M., Zammit, V. A., and Price, N. T. (1999) Biochem. J. 341, 483-489). We have now extended our original observation to all insect genomes that have been sequenced, suggesting that a single CPT1 gene is a universal feature of insect genomes. We hypothesized that insects may be able to generate kinetically distinct variants by alternative splicing of their single CPT1 gene. Analysis of the insect genomes revealed that (a) the single CPT1 gene in each and every insect genome contains two alternative exons and (ii) in all cases, the putative alternative splicing site occurs within a small region corresponding to 21 amino acid residues that are known to be essential for the binding of substrates and of malonyl-CoA in mammalian CPT1A.Weperformed PCR analyses of mRNA from different Drosophila tissues; both of the anticipated splice variants of CPT1mRNAwere found to be expressed in all of the tissues tested (both in larvae and adults), with the expression level for one of the splice variants being significantly different between flight muscle and the fat body of adult Drosophila. Heterologous expression of the full-length cDNAs corresponding to the two putative variants of Drosophila CPT1 in the yeast Pichia pastoris revealed two important differences between the properties of the two variants: (i) their affinity (K 0.5) for one of the substrates, palmitoyl-CoA, differed by 5-fold, and (ii) the sensitivity to inhibition by malonyl-CoA at fixed, higher palmitoyl-CoA concentrations was 2-fold different and associated with different kinetics of inhibition. These data indicate that alternative splicing that specifically affects a structurally crucial region of the protein is an important mechanism through which functional diversity of CPT1 kinetics is generated from the single gene that occurs in insects. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.