91 resultados para Multiple Criteria Decision Making (MCDM)
Resumo:
Purpose - The purpose of the paper is to the identify risk factors, which affect oil and gas construction projects in Vietnam and derive risk responses. Design/methodology/approach - Questionnaire survey was conducted with the involvement of project executives of PetroVietnam and statistical analysis was carried out in order to identify the major project risks. Subsequently, mitigating measures were derived using informal interviews with the various levels of management of PetroVietnam. Findings - Bureaucratic government system and long project approval procedures, poor design, incompetence of project team, inadequate tendering practices, and late internal approval processes from the owner were identified as major risks. The executives suggested various strategies to mitigate the identified risks. Reforming the government system, effective partnership with foreign collaborators, training project executives, implementing contractor evaluation using multiple criteria decision-making technique, and enhancing authorities of project people were suggested as viable approaches. Practical implications - The improvement measures as derived in this study would improve chances of project success in the oil and gas industry in Vietnam. Originality/value - There are several risk management studies on managing projects in developing countries. However, as risk factors vary considerably across industry and countries, the study of risk management for successful projects in the oil and gas industry in Vietnam is unique and has tremendous importance for effective project management.
Resumo:
This paper introduces a compact form for the maximum value of the non-Archimedean in Data Envelopment Analysis (DEA) models applied for the technology selection, without the need to solve a linear programming (LP). Using this method the computational performance the common weight multi-criteria decision-making (MCDM) DEA model proposed by Karsak and Ahiska (International Journal of Production Research, 2005, 43(8), 1537-1554) is improved. This improvement is significant when computational issues and complexity analysis are a concern.
Resumo:
Logistics distribution network design is one of the major decision problems arising in contemporary supply chain management. The decision involves many quantitative and qualitative factors that may be conflicting in nature. This paper applies an integrated multiple criteria decision making approach to design an optimal distribution network. In the approach, the analytic hierarchy process (AHP) is used first to determine the relative importance weightings or priorities of alternative warehouses with respect to both deliverer oriented and customer oriented criteria. Then, the goal programming (GP) model incorporating the constraints of system, resource, and AHP priority is formulated to select the best set of warehouses without exceeding the limited available resources. In this paper, two commercial packages are used: Expert Choice for determining the AHP priorities of the warehouses, and LINDO for solving the GP model. © 2007 IEEE.
Resumo:
This paper develops and applies an integrated multiple criteria decision making approach to optimize the facility location-allocation problem in the contemporary customer-driven supply chain. Unlike the traditional optimization techniques, the proposed approach, combining the analytic hierarchy process (AHP) and the goal programming (GP) model, considers both quantitative and qualitative factors, and also aims at maximizing the benefits of deliverer and customers. In the integrated approach, the AHP is used first to determine the relative importance weightings or priorities of alternative locations with respect to both deliverer oriented and customer oriented criteria. Then, the GP model, incorporating the constraints of system, resource, and AHP priority is formulated to select the best locations for setting up the warehouses without exceeding the limited available resources. In this paper, a real case study is used to demonstrate how the integrated approach can be applied to deal with the facility location-allocation problem, and it is proved that the integrated approach outperforms the traditional costbased approach.
Resumo:
Using a wide range of operational research (OR) optimization examples, Applied Operational Research with SAS demonstrates how the OR procedures in SAS work. The book is one of the first to extensively cover the application of SAS procedures to OR problems, such as single criterion optimization, project management decisions, printed circuit board assembly, and multiple criteria decision making. The text begins with the algorithms and methods for linear programming, integer linear programming, and goal programming models. It then describes the principles of several OR procedures in SAS. Subsequent chapters explain how to use these procedures to solve various types of OR problems. Each of these chapters describes the concept of an OR problem, presents an example of the problem, and discusses the specific procedure and its macros for the optimal solution of the problem. The macros include data handling, model building, and report writing. While primarily designed for SAS users in OR and marketing analytics, the book can also be used by readers interested in mathematical modeling techniques. By formulating the OR problems as mathematical models, the authors show how SAS can solve a variety of optimization problems.
Resumo:
Projects exposed to an uncertain environment must be adapted to deal with the effective integration of various planning elements and the optimization of project parameters. Time, cost, and quality are the prime objectives of a project that need to be optimized to fulfill the owner's goal. In an uncertain environment, there exist many other conflicting objectives that may also need to be optimized. These objectives are characterized by varying degrees of conflict. Moreover, an uncertain environment also causes several changes in the project plan throughout its life, demanding that the project plan be totally flexible. Goal programming (GP), a multiple criteria decision making technique, offers a good solution for this project planning problem. There the planning problem is considered from the owner's perspective, which leads to classifying the project up to the activity level. GP is applied separately at each level, and the formulated models are integrated through information flow. The flexibility and adaptability of the models lies in the ease of updating the model parameters at the required level through changing priorities and/or constraints and transmitting the information to other levels. The hierarchical model automatically provides integration among various element of planning. The proposed methodology is applied in this paper to plan a petroleum pipeline construction project, and its effectiveness is demonstrated.
Resumo:
A cross-country pipeline construction project is exposed to an uncertain environment due to its enormous size (physical, manpower requirement and financial value), complexity in design technology and involvement of external factors. These uncertainties can lead to several changes in project scope during the process of project execution. Unless the changes are properly controlled, the time, cost and quality goals of the project may never be achieved. A methodology is proposed for project control through risk analysis, contingency allocation and hierarchical planning models. Risk analysis is carried out through the analytic hierarchy process (AHP) due to the subjective nature of risks in construction projects. The results of risk analysis are used to determine the logical contingency for project control with the application of probability theory. Ultimate project control is carried out by hierarchical planning model which enables decision makers to take vital decisions during the changing environment of the construction period. Goal programming (GP), a multiple criteria decision-making technique, is proposed for model formulation because of its flexibility and priority-base structure. The project is planned hierarchically in three levels—project, work package and activity. GP is applied separately at each level. Decision variables of each model are different planning parameters of the project. In this study, models are formulated from the owner's perspective and its effectiveness in project control is demonstrated.
Resumo:
This research project has developed a novel decision support system using Geographical Information Systems and Multi Criteria Decision Analysis and used it to develop and evaluate energy-from-waste policy options. The system was validated by applying it to the UK administrative areas of Cornwall and Warwickshire. Different strategies have been defined by the size and number of the facilities, as well as the technology chosen. Using sensitivity on the results from the decision support system, it was found that key decision criteria included those affected by cost, energy efficiency, transport impacts and air/dioxin emissions. The conclusions of this work are that distributed small-scale energy-from-waste facilities score most highly overall and that scale is more important than technology design in determining overall policy impact. This project makes its primary contribution to energy-from-waste planning by its development of a Decision Support System that can be used to assist waste disposal authorities to identify preferred energy-from-waste options that have been tailored specifically to the socio-geographic characteristics of their jurisdictional areas. The project also highlights the potential of energy-from-waste policies that are seldom given enough attention to in the UK, namely those of a smaller-scale and distributed nature that often have technology designed specifically to cater for this market.
Resumo:
Despite concerted academic interest in the strategic decision-making process (SDMP) since the 1980s, a coherent body of theory capable of guiding practice has not materialised. This is because many prior studies focus only on a single process characteristic, often rationality or comprehensiveness, and have paid insufficient attention to context. To further develop theory, research is required which examines: (i) the influence of context from multiple theoretical perspectives (e.g. upper echelons, environmental determinism); (ii) different process characteristics from both synoptic formal (e.g. rationality) and political incremental (e.g. politics) perspectives, and; (iii) the effects of context and process characteristics on a range of SDMP outcomes. Using data from 30 interviews and 357 questionnaires, this thesis addresses several opportunities for theory development by testing an integrative model which incorporates: (i) five SDMP characteristics representing both synoptic formal (procedural rationality, comprehensiveness, and behavioural integration) and political incremental (intuition, and political behaviour) perspectives; (ii) four SDMP outcome variables—strategic decision (SD) quality, implementation success, commitment, and SD speed, and; (iii) contextual variables from the four theoretical perspectives—upper echelons, SD-specific characteristics, environmental determinism, and firm characteristics. The present study makes several substantial and original contributions to knowledge. First, it provides empirical evidence of the contextual boundary conditions under which intuition and political behaviour positively influence SDMP outcomes. Second, it establishes the predominance of the upper echelons perspective; with TMT variables explaining significantly more variance in SDMP characteristics than SD specific characteristics, the external environment, and firm characteristics. A newly developed measure of top management team expertise also demonstrates highly significant direct and indirect effects on the SDMP. Finally, it is evident that SDMP characteristics and contextual variables influence a number of SDMP outcomes, not just overall SD quality, but also implementation success, commitment, and SD speed.
Resumo:
This is the first of two linked papers exploring decision making in nursing which integrate research evidence from different clinical and academic disciplines. Currently there are many decision-making theories, each with their own distinctive concepts and terminology, and there is a tendency for separate disciplines to view their own decision-making processes as unique. Identifying good nursing decisions and where improvements can be made is therefore problematic, and this can undermine clinical and organizational effectiveness, as well as nurses' professional status. Within the unifying framework of psychological classification, the overall aim of the two papers is to clarify and compare terms, concepts and processes identified in a diversity of decision-making theories, and to demonstrate their underlying similarities. It is argued that the range of explanations used across disciplines can usefully be re-conceptualized as classification behaviour. This paper explores problems arising from multiple theories of decision making being applied to separate clinical disciplines. Attention is given to detrimental effects on nursing practice within the context of multidisciplinary health-care organizations and the changing role of nurses. The different theories are outlined and difficulties in applying them to nursing decisions highlighted. An alternative approach based on a general model of classification is then presented in detail to introduce its terminology and the unifying framework for interpreting all types of decisions. The classification model is used to provide the context for relating alternative philosophical approaches and to define decision-making activities common to all clinical domains. This may benefit nurses by improving multidisciplinary collaboration and weakening clinical elitism.
Resumo:
Local Government Authorities (LGAs) are mainly characterised as information-intensive organisations. To satisfy their information requirements, effective information sharing within and among LGAs is necessary. Nevertheless, the dilemma of Inter-Organisational Information Sharing (IOIS) has been regarded as an inevitable issue for the public sector. Despite a decade of active research and practice, the field lacks a comprehensive framework to examine the factors influencing Electronic Information Sharing (EIS) among LGAs. The research presented in this paper contributes towards resolving this problem by developing a conceptual framework of factors influencing EIS in Government-to-Government (G2G) collaboration. By presenting this model, we attempt to clarify that EIS in LGAs is affected by a combination of environmental, organisational, business process, and technological factors and that it should not be scrutinised merely from a technical perspective. To validate the conceptual rationale, multiple case study based research strategy was selected. From an analysis of the empirical data from two case organisations, this paper exemplifies the importance (i.e. prioritisation) of these factors in influencing EIS by utilising the Analytical Hierarchy Process (AHP) technique. The intent herein is to offer LGA decision-makers with a systematic decision-making process in realising the importance (i.e. from most important to least important) of EIS influential factors. This systematic process will also assist LGA decision-makers in better interpreting EIS and its underlying problems. The research reported herein should be of interest to both academics and practitioners who are involved in IOIS, in general, and collaborative e-Government, in particular. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Researchers and managers stress the importance of long-term technology strategies to develop technological capabilities for global competitive advantage. This paper explores the relationship between technology decision-making and strategy in technology transfer (TT) in developing countries, with special reference to South Africa. Earlier research by the authors considered technology and operations integration in developing countries and identified factors that were important to managers in the management of technology. The paper proposes five decision-making levels as the basis of a framework for TT, and investigates the strategic issues pertaining to TT at these levels. Four South African cases studies are used to propose a framework that combines important items in technology transfer and levels of decision-making. The research suggests that technology plays a limited role in strategic decisions in developing countries, and that expectations from new technology are largely operational. Broader implications for managers are identified.
Resumo:
The cyclic change in hormonal profiles between the two main phases of the menstrual cycle mediate shifts in mate preference. Males who advertise social dominance are preferred over other men by females in the follicular phase of the cycle. The present study explored assignment of high or low status resources to dominant looking men by females in either phase of the menstrual cycle. Thirteen females who reported that they were free from any kind of hormonal intervention and experienced a 28 day cycle, were invited to participate in a mock job negotiation scenario. Participants were asked to assign either a minimum, low, high or maximum social status job package to a series of male 'employees' that were previously rated to look either dominant or non-dominant. The results showed that during the follicular phase of the cycle participants assigned dominant looking men more high status job resources than the non-dominant looking men. However, during the luteal phase the participants assigned low status resources to the non-dominant looking men. Females are not merely passive observers of male status cues but actively manipulate the environment to assign status. © 2006 Elsevier B.V. All rights reserved.
Resumo:
The existing method of pipeline health monitoring, which requires an entire pipeline to be inspected periodically, is unproductive. A risk-based decision support system (DSS) that reduces the amount of time spent on inspection has been presented. The risk-based DSS uses the analytic hierarchy process (AHP), a multiple attribute decision-making technique, to identify the factors that influence failure on specific segments and analyzes their effects by determining probability of occurrence of these risk factors. The severity of failure is determined through consequence analysis. From this, the effect of a failure caused by each risk factor can be established in terms of cost and the cumulative effect of failure is determined through probability analysis. The model optimizes the cost of pipeline operations by reducing subjectivity in selecting a specific inspection method, identifying and prioritizing the right pipeline segment for inspection and maintenance, deriving budget allocation, providing guidance to deploy the right mix labor for inspection and maintenance, planning emergency preparation, and deriving logical insurance plan. The proposed methodology also helps derive inspection and maintenance policy for the entire pipeline system, suggest design, operational philosophy, and construction methodology for new pipelines.