24 resultados para Multidimensional projection
Resumo:
We introduce a flexible visual data mining framework which combines advanced projection algorithms from the machine learning domain and visual techniques developed in the information visualization domain. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection algorithms, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates and billboarding, to provide a visual data mining framework. Results on a real-life chemoinformatics dataset using GTM are promising and have been analytically compared with the results from the traditional projection methods. It is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework. Copyright 2006 ACM.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
A recent novel approach to the visualisation and analysis of datasets, and one which is particularly applicable to those of a high dimension, is discussed in the context of real applications. A feed-forward neural network is utilised to effect a topographic, structure-preserving, dimension-reducing transformation of the data, with an additional facility to incorporate different degrees of associated subjective information. The properties of this transformation are illustrated on synthetic and real datasets, including the 1992 UK Research Assessment Exercise for funding in higher education. The method is compared and contrasted to established techniques for feature extraction, and related to topographic mappings, the Sammon projection and the statistical field of multidimensional scaling.
Resumo:
The simulated classical dynamics of a small molecule exhibiting self-organizing behavior via a fast transition between two states is analyzed by calculation of the statistical complexity of the system. It is shown that the complexity of molecular descriptors such as atom coordinates and dihedral angles have different values before and after the transition. This provides a new tool to identify metastable states during molecular self-organization. The highly concerted collective motion of the molecule is revealed. Low-dimensional subspaces dynamics is found sensitive to the processes in the whole, high-dimensional phase space of the system. © 2004 Wiley Periodicals, Inc.
Resumo:
In the present state of the art of authorship attribution there seems to be an opposition between two approaches: cognitive and stylistic methodologies. It is proposed in this article that these two approaches are complementary and that the apparent gap between them can be bridged using Systemic Functional Linguistics (SFL) and in particular some of its theoretical constructions, such as codal variation. This article deals with the theoretical explanation of why such a theory would solve the debate between the two approaches and shows how these two views of authorship attribution are indeed complementary. Although the article is fundamentally theoretical, two example experimental trials are reported to show how this theory can be developed into a workable methodology of doing authorship attribution. In Trial 1, a SFL analysis was carried out on a small dataset consisting of three 300-word texts collected from three different authors whose socio-demographic background matched across a number of parameters. This trial led to some conclusions about developing a methodology based on SFL and suggested the development of another trial, which might hint at a more accurate and useful methodology. In Trial 2, Biber's (1988) multidimensional framework is employed, and a final methodology of authorship analysis based on this kind of analysis is proposed for future research. © 2013, EQUINOX PUBLISHING.
Resumo:
This study extends a previous research concerning intervertebral motion registration by means of 2D dynamic fluoroscopy to obtain a more comprehensive 3D description of vertebral kinematics. The problem of estimating the 3D rigid pose of a CT volume of a vertebra from its 2D X-ray fluoroscopy projection is addressed. 2D-3D registration is obtained maximising a measure of similarity between Digitally Reconstructed Radiographs (obtained from the CT volume) and real fluoroscopic projection. X-ray energy correction was performed. To assess the method a calibration model was realised a sheep dry vertebra was rigidly fixed to a frame of reference including metallic markers. Accurate measurement of 3D orientation was obtained via single-camera calibration of the markers and held as true 3D vertebra position; then, vertebra 3D pose was estimated and results compared. Error analysis revealed accuracy of the order of 0.1 degree for the rotation angles of about 1mm for displacements parallel to the fluoroscopic plane, and of order of 10mm for the orthogonal displacement. © 2010 P. Bifulco et al.
Resumo:
Healthy brain functioning depends on efficient communication of information between brain regions, forming complex networks. By quantifying synchronisation between brain regions, a functionally connected brain network can be articulated. In neurodevelopmental disorders, where diagnosis is based on measures of behaviour and tasks, a measure of the underlying biological mechanisms holds promise as a potential clinical tool. Graph theory provides a tool for investigating the neural correlates of neuropsychiatric disorders, where there is disruption of efficient communication within and between brain networks. This research aimed to use recent conceptualisation of graph theory, along with measures of behaviour and cognitive functioning, to increase understanding of the neurobiological risk factors of atypical development. Using magnetoencephalography to investigate frequency-specific temporal dynamics at rest, the research aimed to identify potential biological markers derived from sensor-level whole-brain functional connectivity. Whilst graph theory has proved valuable for insight into network efficiency, its application is hampered by two limitations. First, its measures have hardly been validated in MEG studies, and second, graph measures have been shown to depend on methodological assumptions that restrict direct network comparisons. The first experimental study (Chapter 3) addressed the first limitation by examining the reproducibility of graph-based functional connectivity and network parameters in healthy adult volunteers. Subsequent chapters addressed the second limitation through adapted minimum spanning tree (a network analysis approach that allows for unbiased group comparisons) along with graph network tools that had been shown in Chapter 3 to be highly reproducible. Network topologies were modelled in healthy development (Chapter 4), and atypical neurodevelopment (Chapters 5 and 6). The results provided support to the proposition that measures of network organisation, derived from sensor-space MEG data, offer insights helping to unravel the biological basis of typical brain maturation and neurodevelopmental conditions, with the possibility of future clinical utility.
Resumo:
Service development is guided by outcome measures that inform service commissioners and providers. Those in liaison psychiatry should be encouraged to develop a positive approach that integrates the collection of outcome measures into everyday clinical practice. The Framework for Routine Outcome Measurement in Liaison Psychiatry (FROM-LP) is a very useful tool to measure service quality and clinical effectiveness, using a combination of clinician-rated and patient-rated outcome measures and patient-rated experience measures. However, it does not include measures of cost-effectiveness or training activities. The FROM-LP is a significant step towards developing nationally unified outcome measures.