28 resultados para Multi-objective optimization techniques
Resumo:
Group decision making is the study of identifying and selecting alternatives based on the values and preferences of the decision maker. Making a decision implies that there are several alternative choices to be considered. This paper uses the concept of Data Envelopment Analysis to introduce a new mathematical method for selecting the best alternative in a group decision making environment. The introduced model is a multi-objective function which is converted into a multi-objective linear programming model from which the optimal solution is obtained. A numerical example shows how the new model can be applied to rank the alternatives or to choose a subset of the most promising alternatives.
Resumo:
This paper introduces a new mathematical method for improving the discrimination power of data envelopment analysis and to completely rank the efficient decision-making units (DMUs). Fuzzy concept is utilised. For this purpose, first all DMUs are evaluated with the CCR model. Thereafter, the resulted weights for each output are considered as fuzzy sets and are then converted to fuzzy numbers. The introduced model is a multi-objective linear model, endpoints of which are the highest and lowest of the weighted values. An added advantage of the model is its ability to handle the infeasibility situation sometimes faced by previously introduced models.
Resumo:
Data envelopment analysis (DEA) as introduced by Charnes, Cooper, and Rhodes (1978) is a linear programming technique that has widely been used to evaluate the relative efficiency of a set of homogenous decision making units (DMUs). In many real applications, the input-output variables cannot be precisely measured. This is particularly important in assessing efficiency of DMUs using DEA, since the efficiency score of inefficient DMUs are very sensitive to possible data errors. Hence, several approaches have been proposed to deal with imprecise data. Perhaps the most popular fuzzy DEA model is based on a-cut. One drawback of the a-cut approach is that it cannot include all information about uncertainty. This paper aims to introduce an alternative linear programming model that can include some uncertainty information from the intervals within the a-cut approach. We introduce the concept of "local a-level" to develop a multi-objective linear programming to measure the efficiency of DMUs under uncertainty. An example is given to illustrate the use of this method.
Resumo:
In this paper the effects of introducing novelty search in evolutionary art are explored. Our algorithm combines fitness and novelty metrics to frame image evolution as a multi-objective optimisation problem, promoting the creation of images that are both suitable and diverse. The method is illustrated by using two evolutionary art engines for the evolution of figurative objects and context free design grammars. The results demonstrate the ability of the algorithm to obtain a larger set of fit images compared to traditional fitness-based evolution, regardless of the engine used.
Resumo:
When visual sensor networks are composed of cameras which can adjust the zoom factor of their own lens, one must determine the optimal zoom levels for the cameras, for a given task. This gives rise to an important trade-off between the overlap of the different cameras’ fields of view, providing redundancy, and image quality. In an object tracking task, having multiple cameras observe the same area allows for quicker recovery, when a camera fails. In contrast having narrow zooms allow for a higher pixel count on regions of interest, leading to increased tracking confidence. In this paper we propose an approach for the self-organisation of redundancy in a distributed visual sensor network, based on decentralised multi-objective online learning using only local information to approximate the global state. We explore the impact of different zoom levels on these trade-offs, when tasking omnidirectional cameras, having perfect 360-degree view, with keeping track of a varying number of moving objects. We further show how employing decentralised reinforcement learning enables zoom configurations to be achieved dynamically at runtime according to an operator’s preference for maximising either the proportion of objects tracked, confidence associated with tracking, or redundancy in expectation of camera failure. We show that explicitly taking account of the level of overlap, even based only on local knowledge, improves resilience when cameras fail. Our results illustrate the trade-off between maintaining high confidence and object coverage, and maintaining redundancy, in anticipation of future failure. Our approach provides a fully tunable decentralised method for the self-organisation of redundancy in a changing environment, according to an operator’s preferences.
Resumo:
One of the major challenges in measuring efficiency in terms of resources and outcomes is the assessment of the evolution of units over time. Although Data Envelopment Analysis (DEA) has been applied for time series datasets, DEA models, by construction, form the reference set for inefficient units (lambda values) based on their distance from the efficient frontier, that is, in a spatial manner. However, when dealing with temporal datasets, the proximity in time between units should also be taken into account, since it reflects the structural resemblance among time periods of a unit that evolves. In this paper, we propose a two-stage spatiotemporal DEA approach, which captures both the spatial and temporal dimension through a multi-objective programming model. In the first stage, DEA is solved iteratively extracting for each unit only previous DMUs as peers in its reference set. In the second stage, the lambda values derived from the first stage are fed to a Multiobjective Mixed Integer Linear Programming model, which filters peers in the reference set based on weights assigned to the spatial and temporal dimension. The approach is demonstrated on a real-world example drawn from software development.
Resumo:
Physical distribution plays an imporant role in contemporary logistics management. Both satisfaction level of of customer and competitiveness of company can be enhanced if the distribution problem is solved optimally. The multi-depot vehicle routing problem (MDVRP) belongs to a practical logistics distribution problem, which consists of three critical issues: customer assignment, customer routing, and vehicle sequencing. According to the literatures, the solution approaches for the MDVRP are not satisfactory because some unrealistic assumptions were made on the first sub-problem of the MDVRP, ot the customer assignment problem. To refine the approaches, the focus of this paper is confined to this problem only. This paper formulates the customer assignment problem as a minimax-type integer linear programming model with the objective of minimizing the cycle time of the depots where setup times are explicitly considered. Since the model is proven to be MP-complete, a genetic algorithm is developed for solving the problem. The efficiency and effectiveness of the genetic algorithm are illustrated by a numerical example.
Resumo:
A technique is presented for the development of a high precision and resolution Mean Sea Surface (MSS) model. The model utilises Radar altimetric sea surface heights extracted from the geodetic phase of the ESA ERS-1 mission. The methodology uses a modified Le Traon et al. (1995) cubic-spline fit of dual ERS-1 and TOPEX/Poseidon crossovers for the minimisation of radial orbit error. The procedure then uses Fourier domain processing techniques for spectral optimal interpolation of the mean sea surface in order to reduce residual errors within the model. Additionally, a multi-satellite mean sea surface integration technique is investigated to supplement the first model with additional enhanced data from the GEOSAT geodetic mission.The methodology employs a novel technique that combines the Stokes' and Vening-Meinsz' transformations, again in the spectral domain. This allows the presentation of a new enhanced GEOSAT gravity anomaly field.
Resumo:
Digital back-propagation (DBP) has recently been proposed for the comprehensive compensation of channel nonlinearities in optical communication systems. While DBP is attractive for its flexibility and performance, it poses significant challenges in terms of computational complexity. Alternatively, phase conjugation or spectral inversion has previously been employed to mitigate nonlinear fibre impairments. Though spectral inversion is relatively straightforward to implement in optical or electrical domain, it requires precise positioning and symmetrised link power profile in order to avail the full benefit. In this paper, we directly compare ideal and low-precision single-channel DBP with single-channel spectral-inversion both with and without symmetry correction via dispersive chirping. We demonstrate that for all the dispersion maps studied, spectral inversion approaches the performance of ideal DBP with 40 steps per span and exceeds the performance of electronic dispersion compensation by ~3.5 dB in Q-factor, enabling up to 96% reduction in complexity in terms of required DBP stages, relative to low precision one step per span based DBP. For maps where quasi-phase matching is a significant issue, spectral inversion significantly outperforms ideal DBP by ~3 dB.
Resumo:
With the growth of the multi-national corporation (MNCs) has come the need to understand how parent companies transfer knowledge to, and manage the operations of, their subsidiaries. This is of particular interest to manufacturing companies transferring their operations overseas. Japanese companies in particular have been pioneering in the development of techniques such as Kaizen, and elements of the Toyota Production System (TPS) such as Kanban, which can be useful tools for transferring the ethos of Japanese manufacturing and maintaining quality and control in overseas subsidiaries. Much has been written about the process of transferring Japanese manufacturing techniques but much less is understood about how the subsidiaries themselves – which are required to make use of such techniques – actually acquire and incorporate them into their operations. This research therefore takes the perspective of the subsidiary in examining how knowledge of manufacturing techniques is transferred from the parent company within its surrounding (subsidiary). There is clearly a need to take a practice-based view to understanding how the local managers and operatives incorporate this knowledge into their working practices. A particularly relevant theme is how subsidiaries both replicate and adapt knowledge from parents and the circumstances in which replication or adaptation occurs. However, it is shown that there is a lack of research which takes an in-depth look at these processes from the perspective of the participants themselves. This is particularly important as much knowledge literature argues that knowledge is best viewed as enacted and learned in practice – and therefore transferred in person – rather than by the transfer of abstract and de-contextualised information. What is needed, therefore, is further research which makes an in-depth examination of what happens at the subsidiary level for this transfer process to occur. There is clearly a need to take a practice-based view to understanding how the local managers and operatives incorporate knowledge about manufacturing techniques into their working practices. In depth qualitative research was, therefore, conducted in the subsidiary of a Japanese multinational, Gambatte Corporation, involving three main manufacturing initiatives (or philosophies), namely 'TPS‘, 'TPM‘ and 'TS‘. The case data were derived from 52 in-depth interviews with project members, moderate-participant observations, and documentations and presented and analysed in episodes format. This study contributes to our understanding of knowledge transfer in relation to the approaches and circumstances of adaptation and replication of knowledge within the subsidiary, how the whole process is developed, and also how 'innovation‘ takes place. This study further understood that the process of knowledge transfer could be explained as a process of Reciprocal Provider-Learner Exchange that can be linked to the Experiential Learning Theory.
Resumo:
We develop an analytical methodology for optimizing phase regeneration based on phase sensitive amplification. The results demonstrate the scalability of the scheme and show the significance of simultaneous optimization of transfer function and the signal alphabet.
Resumo:
Integrated supplier selection and order allocation is an important decision for both designing and operating supply chains. This decision is often influenced by the concerned stakeholders, suppliers, plant operators and customers in different tiers. As firms continue to seek competitive advantage through supply chain design and operations they aim to create optimized supply chains. This calls for on one hand consideration of multiple conflicting criteria and on the other hand consideration of uncertainties of demand and supply. Although there are studies on supplier selection using advanced mathematical models to cover a stochastic approach, multiple criteria decision making techniques and multiple stakeholder requirements separately, according to authors' knowledge there is no work that integrates these three aspects in a common framework. This paper proposes an integrated method for dealing with such problems using a combined Analytic Hierarchy Process-Quality Function Deployment (AHP-QFD) and chance constrained optimization algorithm approach that selects appropriate suppliers and allocates orders optimally between them. The effectiveness of the proposed decision support system has been demonstrated through application and validation in the bioenergy industry.