55 resultados para Model of the semantic fields
Resumo:
The appealing feature of the arbitrage-free Nelson-Siegel model of the yield curve is the ability to capture movements in the yield curve through readily interpretable shifts in its level, slope or curvature, all within a dynamic arbitrage-free framework. To ensure that the level, slope and curvature factors evolve so as not to admit arbitrage, the model introduces a yield-adjustment term. This paper shows how the yield-adjustment term can also be decomposed into the familiar level, slope and curvature elements plus some additional readily interpretable shape adjustments. This means that, even in an arbitrage-free setting, it continues to be possible to interpret movements in the yield curve in terms of level, slope and curvature influences. © 2014 © 2014 Taylor & Francis.
Resumo:
The surface epithelial cells of the stomach represent a major component of the gastric barrier. A cell culture model of the gastric epithelial cell surface would prove useful for biopharmaceutical screening of new chemical entities and dosage forms. Primary cultures of guinea pig gastric mucous epithelial cells were grown on filter inserts (Transwells®) for 3 days. Tight-junction formation, assessed by transepithelial electrical resistance (TEER) and permeability of mannitol and fluorescein, was enhanced when collagen IV rather than collagen I was used to coat the polycarbonate filter. TEER for cells grown on collagen IV was close to that obtained with intact guinea pig gastric epithelium in vitro. Differentiation was assessed by incorporation of [ 3H]glucosamine into glycoprotein and by activity of NADPH oxidase, which produces superoxide. Both of these measures were greater for cells grown on filters coated with collagen I than for cells grown on plastic culture plates, but no major difference was found between cells grown on collagens I and IV. The proportion of cells, which stained positively for mucin with periodic acid Schiff reagent, was greater than 95% for all culture conditions. Monolayers grown on membranes coated with collagen IV exhibited apically polarized secretion of mucin and superoxide, and were resistant to acidification of the apical medium to pH 3.0 for 30 min. A screen of nonsteroidal anti-inflammatory drugs revealed a novel effect of diclofenac and niflumic acid in reversibly reducing permeability by the paracellular route. In conclusion, the mucous cell preparation grown on collagen IV represents a good model of the gastric surface epithelium suitable for screening procedures. © 2005 The Society for Biomolecular Screening.
Resumo:
When people monitor a visual stream of rapidly presented stimuli for two targets (T1 and T2), they often miss T2 if it falls into a time window of about half a second after T1 onset—the attentional blink (AB). We provide an overview of recent neuroscientific studies devoted to analyze the neural processes underlying the AB and their temporal dynamics. The available evidence points to an attentional network involving temporal, right-parietal and frontal cortex, and suggests that the components of this neural network interact by means of synchronization and stimulus-induced desynchronization in the beta frequency range. We set up a neurocognitive scenario describing how the AB might emerge and why it depends on the presence of masks and the other event(s) the targets are embedded in. The scenario supports the idea that the AB arises from ‘‘biased competition’’, with the top–down bias being generated by parietal–frontal interactions and the competition taking place between stimulus codes in temporal cortex.
Resumo:
A comprehensive model of processes involved in femtosecond laser inscription and the subsequent structural material modification is developed. Different time scales of the pulse-plasma dynamics and thermo-mechanical relaxation allow for separate numerical treatments of these processes, while linking them by an energy transfer equation. The model is illustrated and analysed on examples of inscription in fused silica and the results are used to explain previous experimental observations. © 2007 Springer Science+Business Media, LLC.
Resumo:
The response of single fibres of the human cochlear nerve to electrical stimulation by a cochlear implant has previously been inferred from the response of the cochlear nerve in other mammals. These experiments are hindered by stimulus artefact and the range of stimulus currents used is therefore much less than the perceptual dynamic range (from threshold to discomfort) of human subjects. We have investigated use of the sciatic nerve of the toad Xenopus laevis as a convenient physiological model of the human cochlear nerve. Use of this completely dissected nerve reduces the problems of stimulus artefact whilst maintaining the advantages of a physiological preparation. The validity of the model was assessed by measuring the refractory periods, excitation time-constant, and relative spread of single fibres using microelectrode recording. We have also investigated the response of nerve fibres to sinusoidal stimulation. Based on these measurements, we propose that the sciatic nerve may be a suitable model of the human cochlear nerve if the timescales of stimuli are decreased by a factor of about five to compensate for the slower dynamics of the sciatic nerve and if noise is added to the stimuli to compensate for the lower internal noise of sciatic nerve fibres.
Resumo:
The link between off-target anticholinergic effects of medications and acute cognitive impairment in older adults requires urgent investigation. We aimed to determine whether a relevant in vitro model may aid the identification of anticholinergic responses to drugs and the prediction of anticholinergic risk during polypharmacy. In this preliminary study we employed a co-culture of human-derived neurons and astrocytes (NT2.N/A) derived from the NT2 cell line. NT2.N/A cells possess much of the functionality of mature neurons and astrocytes, key cholinergic phenotypic markers and muscarinic acetylcholine receptors (mAChRs). The cholinergic response of NT2 astrocytes to the mAChR agonist oxotremorine was examined using the fluorescent dye fluo-4 to quantitate increases in intracellular calcium [Ca2+]i. Inhibition of this response by drugs classified as severe (dicycloverine, amitriptyline), moderate (cyclobenzaprine) and possible (cimetidine) on the Anticholinergic Cognitive Burden (ACB) scale, was examined after exposure to individual and pairs of compounds. Individually, dicycloverine had the most significant effect regarding inhibition of the astrocytic cholinergic response to oxotremorine, followed by amitriptyline then cyclobenzaprine and cimetidine, in agreement with the ACB scale. In combination, dicycloverine with cyclobenzaprine had the most significant effect, followed by dicycloverine with amitriptyline. The order of potency of the drugs in combination frequently disagreed with predicted ACB scores derived from summation of the individual drug scores, suggesting current scales may underestimate the effect of polypharmacy. Overall, this NT2.N/A model may be appropriate for further investigation of adverse anticholinergic effects of multiple medications, in order to inform clinical choices of suitable drug use in the elderly.
Resumo:
Central nervous system (CNS) drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB), blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF), choroidal epithelial and total cerebrospinal fluid (CSF) compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain) and CSF:plasma ratio (CSF:Plasmau) using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways.
Resumo:
In studies of complex heterogeneous networks, particularly of the Internet, significant attention was paid to analysing network failures caused by hardware faults or overload. There network reaction was modelled as rerouting of traffic away from failed or congested elements. Here we model network reaction to congestion on much shorter time scales when the input traffic rate through congested routes is reduced. As an example we consider the Internet where local mismatch between demand and capacity results in traffic losses. We describe the onset of congestion as a phase transition characterised by strong, albeit relatively short-lived, fluctuations of losses caused by noise in input traffic and exacerbated by the heterogeneous nature of the network manifested in a power-law load distribution. The fluctuations may result in the network strongly overreacting to the first signs of congestion by significantly reducing input traffic along the communication paths where congestion is utterly negligible. © 2013 IEEE.
Resumo:
Human Resource (HR) systems and practices generally referred to as High Performance Work Practices (HPWPs), (Huselid, 1995) (sometimes termed High Commitment Work Practices or High Involvement Work Practices) have attracted much research attention in past decades. Although many conceptualizations of the construct have been proposed, there is general agreement that HPWPs encompass a bundle or set of HR practices including sophisticated staffing, intensive training and development, incentive-based compensation, performance management, initiatives aimed at increasing employee participation and involvement, job safety and security, and work design (e.g. Pfeffer, 1998). It is argued that these practices either directly and indirectly influence the extent to which employees’ knowledge, skills, abilities, and other characteristics are utilized in the organization. Research spanning nearly 20 years has provided considerable empirical evidence for relationships between HPWPs and various measures of performance including increased productivity, improved customer service, and reduced turnover (e.g. Guthrie, 2001; Belt & Giles, 2009). With the exception of a few papers (e.g., Laursen &Foss, 2003), this literature appears to lack focus on how HPWPs influence or foster more innovative-related attitudes and behaviours, extra role behaviors, and performance. This situation exists despite the vast evidence demonstrating the importance of innovation, proactivity, and creativity in its various forms to individual, group, and organizational performance outcomes. Several pertinent issues arise when considering HPWPs and their relationship to innovation and performance outcomes. At a broad level is the issue of which HPWPs are related to which innovation-related variables. Another issue not well identified in research relates to employees’ perceptions of HPWPs: does an employee actually perceive the HPWP –outcomes relationship? No matter how well HPWPs are designed, if they are not perceived and experienced by employees to be effective or worthwhile then their likely success in achieving positive outcomes is limited. At another level, research needs to consider the mechanisms through which HPWPs influence –innovation and performance. The research question here relates to what possible mediating variables are important to the success or failure of HPWPs in impacting innovative behaviours and attitudes and what are the potential process considerations? These questions call for theory refinement and the development of more comprehensive models of the HPWP-innovation/performance relationship that include intermediate linkages and boundary conditions (Ferris, Hochwarter, Buckley, Harrell-Cook, & Frink, 1999). While there are many calls for this type of research to be made a high priority, to date, researchers have made few inroads into answering these questions. This symposium brings together researchers from Australia, Europe, Asia and Africa to examine these various questions relating to the HPWP-innovation-performance relationship. Each paper discusses a HPWP and potential variables that can facilitate or hinder the effects of these practices on innovation- and performance- related outcomes. The first paper by Johnston and Becker explores the HPWPs in relation to work design in a disaster response organization that shifts quickly from business as usual to rapid response. The researchers examine how the enactment of the organizational response is devolved to groups and individuals. Moreover, they assess motivational characteristics that exist in dual work designs (normal operations and periods of disaster activation) and the implications for innovation. The second paper by Jørgensen reports the results of an investigation into training and development practices and innovative work behaviors (IWBs) in Danish organizations. Research on how to design and implement training and development initiatives to support IWBs and innovation in general is surprisingly scant and often vague. This research investigates the mechanisms by which training and development initiatives influence employee behaviors associated with innovation, and provides insights into how training and development can be used effectively by firms to attract and retain valuable human capital in knowledge-intensive firms. The next two papers in this symposium consider the role of employee perceptions of HPWPs and their relationships to innovation-related variables and performance. First, Bish and Newton examine perceptions of the characteristics and awareness of occupational health and safety (OHS) practices and their relationship to individual level adaptability and proactivity in an Australian public service organization. The authors explore the role of perceived supportive and visionary leadership and its impact on the OHS policy-adaptability/proactivity relationship. The study highlights the positive main effects of awareness and characteristics of OHS polices, and supportive and visionary leadership on individual adaptability and proactivity. It also highlights the important moderating effects of leadership in the OHS policy-adaptability/proactivity relationship. Okhawere and Davis present a conceptual model developed for a Nigerian study in the safety-critical oil and gas industry that takes a multi-level approach to the HPWP-safety relationship. Adopting a social exchange perspective, they propose that at the organizational level, organizational climate for safety mediates the relationship between enacted HPWS’s and organizational safety performance (prescribed and extra role performance). At the individual level, the experience of HPWP impacts on individual behaviors and attitudes in organizations, here operationalized as safety knowledge, skills and motivation, and these influence individual safety performance. However these latter relationships are moderated by organizational climate for safety. A positive organizational climate for safety strengthens the relationship between individual safety behaviors and attitudes and individual-level safety performance, therefore suggesting a cross-level boundary condition. The model includes both safety performance (behaviors) and organizational level safety outcomes, operationalized as accidents, injuries, and fatalities. The final paper of this symposium by Zhang and Liu explores leader development and relationship between transformational leadership and employee creativity and innovation in China. The authors further develop a model that incorporates the effects of extrinsic motivation (pay for performance: PFP) and employee collectivism in the leader-employee creativity relationship. The papers’ contributions include the incorporation of a PFP effect on creativity as moderator, rather than predictor in most studies; the exploration of the PFP effect from both fairness and strength perspectives; the advancement of knowledge on the impact of collectivism on the leader- employee creativity link. Last, this is the first study to examine three-way interactional effects among leader-member exchange (LMX), PFP and collectivism, thus, enriches our understanding of promoting employee creativity. In conclusion, this symposium draws upon the findings of four empirical studies and one conceptual study to provide an insight into understanding how different variables facilitate or potentially hinder the influence various HPWPs on innovation and performance. We will propose a number of questions for further consideration and discussion. The symposium will address the Conference Theme of ‘Capitalism in Question' by highlighting how HPWPs can promote financial health and performance of organizations while maintaining a high level of regard and respect for employees and organizational stakeholders. Furthermore, the focus on different countries and cultures explores the overall research question in relation to different modes or stages of development of capitalism.
Resumo:
The cell:cell bond between an immune cell and an antigen presenting cell is a necessary event in the activation of the adaptive immune response. At the juncture between the cells, cell surface molecules on the opposing cells form non-covalent bonds and a distinct patterning is observed that is termed the immunological synapse. An important binding molecule in the synapse is the T-cell receptor (TCR), that is responsible for antigen recognition through its binding with a major-histocompatibility complex with bound peptide (pMHC). This bond leads to intracellular signalling events that culminate in the activation of the T-cell, and ultimately leads to the expression of the immune eector function. The temporal analysis of the TCR bonds during the formation of the immunological synapse presents a problem to biologists, due to the spatio-temporal scales (nanometers and picoseconds) that compare with experimental uncertainty limits. In this study, a linear stochastic model, derived from a nonlinear model of the synapse, is used to analyse the temporal dynamics of the bond attachments for the TCR. Mathematical analysis and numerical methods are employed to analyse the qualitative dynamics of the nonequilibrium membrane dynamics, with the specic aim of calculating the average persistence time for the TCR:pMHC bond. A single-threshold method, that has been previously used to successfully calculate the TCR:pMHC contact path sizes in the synapse, is applied to produce results for the average contact times of the TCR:pMHC bonds. This method is extended through the development of a two-threshold method, that produces results suggesting the average time persistence for the TCR:pMHC bond is in the order of 2-4 seconds, values that agree with experimental evidence for TCR signalling. The study reveals two distinct scaling regimes in the time persistent survival probability density prole of these bonds, one dominated by thermal uctuations and the other associated with the TCR signalling. Analysis of the thermal fluctuation regime reveals a minimal contribution to the average time persistence calculation, that has an important biological implication when comparing the probabilistic models to experimental evidence. In cases where only a few statistics can be gathered from experimental conditions, the results are unlikely to match the probabilistic predictions. The results also identify a rescaling relationship between the thermal noise and the bond length, suggesting a recalibration of the experimental conditions, to adhere to this scaling relationship, will enable biologists to identify the start of the signalling regime for previously unobserved receptor:ligand bonds. Also, the regime associated with TCR signalling exhibits a universal decay rate for the persistence probability, that is independent of the bond length.
Resumo:
Visual evoked magnetic responses were recorded to full-field and left and right half-field stimulation with three check sizes (70′, 34′ and 22′) in five normal subjects. Recordings were made sequentially on a 20-position grid (4 × 5) based on the inion, by means of a single-channel direct current-Superconducting Quantum Interference Device second-order gradiometer. The topographic maps were consistent on the same subjects recorded 2 months apart. The half-field responses produced the strongest signals in the contralateral hemisphere and were consistent with the cruciform model of the calcarine fissure. Right half fields produced upper-left-quadrant outgoing fields and lower-left-quadrant ingoing fields, while the left half field produced the opposite response. The topographic maps also varied with check size, with the larger checks producing positive or negative maximum position more anteriorly than small checks. In addition, with large checks the full-field responses could be explained as the summation of the two half fields, whereas full-field responses to smaller checks were more unpredictable and may be due to sources located at the occipital pole or lateral surface. In addition, dipole sources were located as appropriate with the use of inverse problem solutions. Topographic data will be vital to the clinical use of the visual evoked field but, in addition, provides complementary information to visual evoked potentials, allowing detailed studies of the visual cortex. © 1992 Kluwer Academic Publishers.
Resumo:
The research investigates the processes of adoption and implementation, by organisations, of computer aided production management systems (CAPM). It is organised around two different theoretical perspectives. The first part is informed by the Rogers model of the diffusion, adoption and implementation of innovations, and the second part by a social constructionist approach to technology. Rogers' work is critically evaluated and a model of adoption and implementation is distilled from it and applied to a set of empirical case studies. In the light of the case study data, strengths and weaknesses of the model are identified. It is argued that the model is too rational and linear to provide an adequate explanation of adoption processes. It is useful for understanding processes of implementation but requires further development. The model is not able to adequately encompass complex computer based technologies. However, the idea of 'reinvention' is identified as Roger's key concept but it needs to be conceptually extended. Both Roger's model and definition of CAPM found in the literature from production engineering tend to treat CAPM in objectivist terms. The problems with this view are addressed through a review of the literature on the sociology of technology, and it is argued that a social constructionist approach offers a more useful framework for understanding CAPM, its nature, adoption, implementation, and use. CAPM it is argued, must be understood on terms of the ways in which it is constituted in discourse, as part of a 'struggle for meaning' on the part of academics, professional engineers, suppliers, and users.