47 resultados para Mobile Sensor Networks
Resumo:
IEEE 802.15.4 standard is a relatively new standard designed for low power low data rate wireless sensor networks (WSN), which has a wide range of applications, e.g., environment monitoring, e-health, home and industry automation. In this paper, we investigate the problems of hidden devices in coverage overlapped IEEE 802.15.4 WSNs, which is likely to arise when multiple 802.15.4 WSNs are deployed closely and independently. We consider a typical scenario of two 802.15.4 WSNs with partial coverage overlapping and propose a Markov-chain based analytical model to reveal the performance degradation due to the hidden devices from the coverage overlapping. Impacts of the hidden devices and network sleeping modes on saturated throughput and energy consumption are modeled. The analytic model is verified by simulations, which can provide the insights to network design and planning when multiple 802.15.4 WSNs are deployed closely. © 2013 IEEE.
Resumo:
Distributed source coding (DSC) has recently been considered as an efficient approach to data compression in wireless sensor networks (WSN). Using this coding method multiple sensor nodes compress their correlated observations without inter-node communications. Therefore energy and bandwidth can be efficiently saved. In this paper, we investigate a randombinning based DSC scheme for remote source estimation in WSN and its performance of estimated signal to distortion ratio (SDR). With the introduction of a detailed power consumption model for wireless sensor communications, we quantitatively analyze the overall network energy consumption of the DSC scheme. We further propose a novel energy-aware transmission protocol for the DSC scheme, which flexibly optimizes the DSC performance in terms of either SDR or energy consumption, by adapting the source coding and transmission parameters to the network conditions. Simulations validate the energy efficiency of the proposed adaptive transmission protocol. © 2007 IEEE.
Resumo:
The number of nodes has large impact on the performance, lifetime and cost of wireless sensor network (WSN). It is difficult to determine, because it depends on many factors, such as the network protocols, the collaborative signal processing (CSP) algorithms, etc. A mathematical model is proposed in this paper to calculate the number based on the required working time. It can be used in the general situation by treating these factors as the parameters of energy consumption. © 2004 IEEE.
Resumo:
Energy consumption has been a key concern of data gathering in wireless sensor networks. Previous research works show that modulation scaling is an efficient technique to reduce energy consumption. However, such technique will also impact on both packet delivery latency and packet loss, therefore, may result in adverse effects on the qualities of applications. In this paper, we study the problem of modulation scaling and energy-optimization. A mathematical model is proposed to analyze the impact of modulation scaling on the overall energy consumption, end-to-end mean delivery latency and mean packet loss rate. A centralized optimal management mechanism is developed based on the model, which adaptively adjusts the modulation levels to minimize energy consumption while ensuring the QoS for data gathering. Experimental results show that the management mechanism saves significant energy in all the investigated scenarios. Some valuable results are also observed in the experiments. © 2004 IEEE.
Resumo:
The energy balancing capability of cooperative communication is utilized to solve the energy hole problem in wireless sensor networks. We first propose a cooperative transmission strategy, where intermediate nodes participate in two cooperative multi-input single-output (MISO) transmissions with the node at the previous hop and a selected node at the next hop, respectively. Then, we study the optimization problems for power allocation of the cooperative transmission strategy by examining two different approaches: network lifetime maximization (NLM) and energy consumption minimization (ECM). For NLM, the numerical optimal solution is derived and a searching algorithm for suboptimal solution is provided when the optimal solution does not exist. For ECM, a closed-form solution is obtained. Numerical and simulation results show that both the approaches have much longer network lifetime than SISO transmission strategies and other cooperative communication schemes. Moreover, NLM which features energy balancing outperforms ECM which focuses on energy efficiency, in the network lifetime sense.
Resumo:
The concern over the quality of delivering video streaming services in mobile wireless networks is addressed in this work. A framework that enhances the Quality of Experience (QoE) of end users through a quality driven resource allocation scheme is proposed. To play a key role, an objective no-reference quality metric, Pause Intensity (PI), is adopted to derive a resource allocation algorithm for video streaming. The framework is examined in the context of 3GPP Long Term Evolution (LTE) systems. The requirements and structure of the proposed PI-based framework are discussed, and results are compared with existing scheduling methods on fairness, efficiency and correlation (between the required and allocated data rates). Furthermore, it is shown that the proposed framework can produce a trade-off between the three parameters through the QoE-aware resource allocation process.
Resumo:
A real-time adaptive resource allocation algorithm considering the end user's Quality of Experience (QoE) in the context of video streaming service is presented in this work. An objective no-reference quality metric, namely Pause Intensity (PI), is used to control the priority of resource allocation to users during the scheduling process. An online adjustment has been introduced to adaptively set the scheduler's parameter and maintain a desired trade-off between fairness and efficiency. The correlation between the data rates (i.e. video code rates) demanded by users and the data rates allocated by the scheduler is taken into account as well. The final allocated rates are determined based on the channel status, the distribution of PI values among users, and the scheduling policy adopted. Furthermore, since the user's capability varies as the environment conditions change, the rate adaptation mechanism for video streaming is considered and its interaction with the scheduling process under the same PI metric is studied. The feasibility of implementing this algorithm is examined and the result is compared with the most commonly existing scheduling methods.
Resumo:
Location estimation is important for wireless sensor network (WSN) applications. In this paper we propose a Cramer-Rao Bound (CRB) based analytical approach for two centralized multi-hop localization algorithms to get insights into the error performance and its sensitivity to the distance measurement error, anchor node density and placement. The location estimation performance is compared with four distributed multi-hop localization algorithms by simulation to evaluate the efficiency of the proposed analytical approach. The numerical results demonstrate the complex tradeoff between the centralized and distributed localization algorithms on accuracy, complexity and communication overhead. Based on this analysis, an efficient and scalable performance evaluation tool can be designed for localization algorithms in large scale WSNs, where simulation-based evaluation approaches are impractical. © 2013 IEEE.
Resumo:
We present a new method for the interrogation of large arrays of Bragg grating sensors. Eight gratings operating between the wavelengths of 1533 and 1555 nm have been demultiplexed. An unbalanced Mach—Zehnder interferometer illuminated by a single low-coherence source provides a high-phase-resolution output for each sensor, the outputs of which are sequentially selected in wavelength by a tunable Fabry-Perot interferometer. The minimum detectable strain measured was 90 ne-vHz at 7 Hz for a wavelength of 1535 nm.
Resumo:
Editorial
Resumo:
When visual sensor networks are composed of cameras which can adjust the zoom factor of their own lens, one must determine the optimal zoom levels for the cameras, for a given task. This gives rise to an important trade-off between the overlap of the different cameras’ fields of view, providing redundancy, and image quality. In an object tracking task, having multiple cameras observe the same area allows for quicker recovery, when a camera fails. In contrast having narrow zooms allow for a higher pixel count on regions of interest, leading to increased tracking confidence. In this paper we propose an approach for the self-organisation of redundancy in a distributed visual sensor network, based on decentralised multi-objective online learning using only local information to approximate the global state. We explore the impact of different zoom levels on these trade-offs, when tasking omnidirectional cameras, having perfect 360-degree view, with keeping track of a varying number of moving objects. We further show how employing decentralised reinforcement learning enables zoom configurations to be achieved dynamically at runtime according to an operator’s preference for maximising either the proportion of objects tracked, confidence associated with tracking, or redundancy in expectation of camera failure. We show that explicitly taking account of the level of overlap, even based only on local knowledge, improves resilience when cameras fail. Our results illustrate the trade-off between maintaining high confidence and object coverage, and maintaining redundancy, in anticipation of future failure. Our approach provides a fully tunable decentralised method for the self-organisation of redundancy in a changing environment, according to an operator’s preferences.
Resumo:
Energy efficiency is one of the most important performances of a wireless sensor network. In this paper, we show that choosing a proper transmission scheme given the channel and network conditions can ensure a high energy performance in different transmission environments. Based on the energy models we established for both cooperative and non-cooperative communications, the efficiency in terms of energy consumption per bit for different transmission schemes is investigated. It is shown that cooperative transmission schemes can outperform non-cooperative schemes in energy efficiency in severe channel conditions and when the source-destination distance is in a medium or long range. But the latter is more energy efficient than the former for short-range transmission. For cooperative transmission schemes, the number of transmission branches and the number of relays per branch can also be properly selected to adapt to the variations of the transmission environment, so that the total energy consumption can be minimized.
Resumo:
Groupe Spécial Mobile (GSM) has been developed as the pan-European second generation of digital mobile systems. GSM operates in the 900 MHz frequency band and employs digital technology instead of the analogue technology of its predecessors. Digital technology enables the GSM system to operate in much smaller zones in comparison with the analogue systems. The GSM system will offer greater roaming facilities to its subscribers, extended throughout the countries that have installed the system. The GSM system could be seen as a further enhancement to European integration. GSM has adopted a contention-based protocol for multipoint-to-point transmission. In particular, the slotted-ALOHA medium access protocol is used to coordinate the transmission of the channel request messages between the scattered mobile stations. Collision still happens when more than one mobile station having the same random reference number attempts to transmit on the same time-slot. In this research, a modified version of this protocol has been developed in order to reduce the number of collisions and hence increase the random access channel throughput compared to the existing protocol. The performance evaluation of the protocol has been carried out using simulation methods. Due to the growing demand for mobile radio telephony as well as for data services, optimal usage of the scarce availability radio spectrum is becoming increasingly important. In this research, a protocol has been developed whereby the number of transmitted information packets over the GSM system is increased without any additional increase of the allocated radio spectrum. Simulation results are presented to show the improvements achieved by the proposed protocol. Cellular mobile radio networks commonly respond to an increase in the service demand by using smaller coverage areas. As a result, the volume of the signalling exchanges increases. In this research, a proposal for interconnecting the various entitles of the mobile radio network over the future broadband networks based on the IEEE 802.6 Metropolitan Area Network (MAN) is outlined. Simulation results are presented to show the benefits achieved by interconnecting these entities over the broadband Networks.
Resumo:
Wireless sensor networks have been identified as one of the key technologies for the 21st century. They consist of tiny devices with limited processing and power capabilities, called motes that can be deployed in large numbers of useful sensing capabilities. Even though, they are flexible and easy to deploy, there are a number of considerations when it comes to their fault tolerance, conserving energy and re-programmability that need to be addressed before we draw any substantial conclusions about the effectiveness of this technology. In order to overcome their limitations, we propose a middleware solution. The proposed scheme is composed based on two main methods. The first method involves the creation of a flexible communication protocol based on technologies such as Mobile Code/Agents and Linda-like tuple spaces. In this way, every node of the wireless sensor network will produce and process data based on what is the best for it but also for the group that it belongs too. The second method incorporates the above protocol in a middleware that will aim to bridge the gap between the application layer and low level constructs such as the physical layer of the wireless sensor network. A fault tolerant platform for deploying and monitoring applications in real time offers a number of possibilities for the end user giving him in parallel the freedom to experiment with various parameters, in an effort towards the deployed applications running in an energy efficient manner inside the network. The proposed scheme is evaluated through a number of trials aiming to test its merits under real time conditions and to identify its effectiveness against other similar approaches. Finally, parameters which determine the characteristics of the proposed scheme are also examined.