23 resultados para Methods of Encryption
Resumo:
Lipid peroxidation products like malondialdehyde, 4-hydroxynonenal and F(2)-isoprostanes are widely used as markers of oxidative stress in vitro and in vivo. This study reports the results of a multi-laboratory validation study by COST Action B35 to assess inter-laboratory and intra-laboratory variation in the measurement of lipid peroxidation. Human plasma samples were exposed to UVA irradiation at different doses (0, 15 J, 20 J), encoded and shipped to 15 laboratories, where analyses of malondialdehyde, 4-hydroxynonenal and isoprostanes were conducted. The results demonstrate a low within-day-variation and a good correlation of results observed on two different days. However, high coefficients of variation were observed between the laboratories. Malondialdehyde determined by HPLC was found to be the most sensitive and reproducible lipid peroxidation product in plasma upon UVA treatment. It is concluded that measurement of malondialdehyde by HPLC has good analytical validity for inter-laboratory studies on lipid peroxidation in human EDTA-plasma samples, although it is acknowledged that this may not translate to biological validity.
Resumo:
This work presents a two-dimensional approach of risk assessment method based on the quantification of the probability of the occurrence of contaminant source terms, as well as the assessment of the resultant impacts. The risk is calculated using Monte Carlo simulation methods whereby synthetic contaminant source terms were generated to the same distribution as historically occurring pollution events or a priori potential probability distribution. The spatial and temporal distributions of the generated contaminant concentrations at pre-defined monitoring points within the aquifer were then simulated from repeated realisations using integrated mathematical models. The number of times when user defined ranges of concentration magnitudes were exceeded is quantified as risk. The utilities of the method were demonstrated using hypothetical scenarios, and the risk of pollution from a number of sources all occurring by chance together was evaluated. The results are presented in the form of charts and spatial maps. The generated risk maps show the risk of pollution at each observation borehole, as well as the trends within the study area. This capability to generate synthetic pollution events from numerous potential sources of pollution based on historical frequency of their occurrence proved to be a great asset to the method, and a large benefit over the contemporary methods.
Resumo:
In this paper, we discuss some practical implications for implementing adaptable network algorithms applied to non-stationary time series problems. Two real world data sets, containing electricity load demands and foreign exchange market prices, are used to test several different methods, ranging from linear models with fixed parameters, to non-linear models which adapt both parameters and model order on-line. Training with the extended Kalman filter, we demonstrate that the dynamic model-order increment procedure of the resource allocating RBF network (RAN) is highly sensitive to the parameters of the novelty criterion. We investigate the use of system noise for increasing the plasticity of the Kalman filter training algorithm, and discuss the consequences for on-line model order selection. The results of our experiments show that there are advantages to be gained in tracking real world non-stationary data through the use of more complex adaptive models.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Discrete-event simulation (DES) is a developed technology used to model manufacturing and service systems. However, although the importance of modelling people in a DES has been recognised, there is little guidance on how this can be achieved in practice. The results from a literature review were used in order to identify examples of the use of DES to model people. Each article was examined in order to determine the method used to model people within the simulation study. It was found that there are no common methods but a diverse range of approaches used to model human behaviour in DES. This paper provides an outline of the approaches used to model people in terms of their decision making, availability for work, task performance and arrival rate. The outcome brings together the current knowledge in this area and will be of interest to researchers considering developing a methodology for modelling people in DES and to practitioners engaged with a simulation project involving the model ling of people’s behaviour.
Resumo:
Two contrasting multivariate statistical methods, viz., principal components analysis (PCA) and cluster analysis were applied to the study of neuropathological variations between cases of Alzheimer's disease (AD). To compare the two methods, 78 cases of AD were analyzed, each characterised by measurements of 47 neuropathological variables. Both methods of analysis revealed significant variations between AD cases. These variations were related primarily to differences in the distribution and abundance of senile plaques (SP) and neurofibrillary tangles (NFT) in the brain. Cluster analysis classified the majority of AD cases into five groups which could represent subtypes of AD. However, PCA suggested that variation between cases was more continuous with no distinct subtypes. Hence, PCA may be a more appropriate method than cluster analysis in the study of neuropathological variations between AD cases.