34 resultados para Mesoporous Zeolite
Resumo:
Copper(II) acetylacetonate was anchored onto a hexagonal mesoporous silica (HMS) material using a two-step procedure: (i) functionalisation of the surface hydroxy groups with (3-aminopropyl)triethoxysilane (AMPTSi) and then (ii) anchoring of the copper(II) complex through Schiff condensation with free amine groups, using two different metal complex loadings. Upon the first step, nitrogen elemental analysis, XPS and DRIFT showed the presence of amine groups on the surface of the HMS material, and porosimetry indicated that the structure of the mesoporous material remained unchanged, although a slight decrease in surface area was observed. Atomic absorption, XPS and DRIFT showed that copper(II) acetylacetonate was anchored onto the amine-functionalised HMS by Schiff condensation between the free amine groups and the carbonyl groups of the copper(II) complex; using EPR an NO3 coordination sphere was proposed for the anchored copper(II) complex. The new [Cu(acac)2]-AMPTSi/HMS materials were tested in the aziridination of styrene at room temperature, using PhI=NTs as nitrogen source and acetonitrile as solvent. The styrene conversion and total TON of the heterogeneous phase reaction are higher than those of the same reaction catalysed in homogeneous phase by [Cu(acac)2]; nevertheless, the initial activity decreases and the reaction time increases due to substrate and product diffusion limitations. The heterogeneous catalyst showed a successive slight decrease in catalytic activity when reused for two more times. © Wiley-VCH Verlag GmbH & Co. KGaA, 2006.
Resumo:
Two modified Jacobsen-type catalysts were anchored onto an amine functionalised hexagonal mesoporous silica (HMS) using two distinct anchoring procedures: (i) one was anchored directly through the carboxylic acid functionalised diimine bridge fragment of the complex (CAT1) and (ii) the other through the hydroxyl group on the aldehyde fragment of the complex (CAT2), mediated by cyanuric chloride. The new heterogeneous catalyst, as well as the precedent materials, were characterised by elemental analyses, DRIFT, UV-vis, porosimetry and XPS which showed that the complexes were successfully anchored onto the hexagonal mesoporous silica. These materials acted as active heterogeneous catalysts in the epoxidation of styrene, using m-CPBA as oxidant, and α-methylstyrene, using NaOCl as oxidant. Under the latter conditions they acted also as enantioselective heterogeneous catalysts. Furthermore, when compared to the reaction run in homogeneous phase under similar experimental conditions, an increase in asymmetric induction was observed for the heterogenised CAT1, while the opposite effect was observed for the heterogenised CAT2, despite of CAT2 being more enantioselective than CAT1 in homogeneous phase. These results indicate that the covalent attachment of the Jacobsen catalyst through the diimine bridge leads to improved enantiomeric excess (%ee), whereas covalent attachment through one of the aldehyde fragments results in a negative effect in the %ee. Using α-methylstyrene and NaOCl as oxidant, heterogeneous catalyst reuse led to no significant loss of catalytic activity and enantioselectivity. © 2005 Elsevier Inc. All rights reserved.
Resumo:
A Jacobsen-type catalyst was anchored onto an amine functionalised hexagonal mesoporous silica (HMS) through the diimine bridge fragment of the complex. The new heterogeneous catalyst, as well as the precedent materials, were characterised by elemental analyses, FTIR-DRIFT, UV-vis, porosimetry and XPS which showed that the complex was successfully anchored. This material was active in the epoxidation of styrene and α-methylstyrene in dichloromethane at 0°C using, respectively, m-CPBA/NMO and NaOCl. With the former substrate no asymmetric induction was found in the epoxide, whereas with the latter substrate higher %ee was found than in homogeneous phase. Using the latter experimental conditions, catalyst reuse led to no significant loss of catalytic activity and enantioselectivity. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Highly active mesoporous SO4/ZrO2/HMS (hexagonal mesoroporous silica) solid acid catalysts with tuneable sulphated zirconia (SZ) content have been prepared for the liquid phase isomerisation of α-pinene. The mesoporous HMS framework is preserved during the grafting process as evidenced by the X-ray diffraction (XRD) and porosimetry with all SO4/ZrO2/HMS materials possessing average pore-diameters ∼20 Å. XRD confirms the presence of a stabilized tetragonal phase of nanoparticulate ZrO2, with no evidence for zirconia phase separation or the formation of discrete crystallites, consistent with a uniform and highly dispersed SZ coating. The activity towards α-pinene isomerisation scales linearly with Zr loading, while the specific activities are an order of magnitude greater than attainable by conventional methodologies (∼1 versus 0.08 mol h−1 g Zr−1).
Resumo:
The solid acid supported aluminium chloride is an effective cationic initiator for the polymerisation of hydrocarbons. Reactions are highly dependent on the nature of the active sites and the Lewis/Bronsted acid balance in particular.
Resumo:
Hydrothermal saline promoted grafting of sulfonic acid groups onto SBA-15 and periodic mesoporous organic silica analogues affords solid acid catalysts with high acid site loadings (>2.5 mmol g-1 H+), ordered mesoporosity and tunable hydrophobicity. The resulting catalysts show excellent activity for fatty acid esterification and tripalmitin transesterification to methyl palmitate, with framework phenyl groups promoting fatty acid methyl esters production. (Chemical Equation Presented)
Resumo:
In recent years, surface plasmon-induced photocatalytic materials with tunable mesoporous framework have attracted considerable attention in energy conversion and environmental remediation. Herein we report a novel Au nanoparticles decorated mesoporous graphitic carbon nitride (Au/mp-g-C3N4) nanosheets via a template-free and green in situ photo-reduction method. The synthesized Au/mp-g-C3N4 nanosheets exhibit a strong absorption edge in visible and near-IR region owing to the surface plasmon resonance effect of Au nanoparticles. More attractively, Au/mp-g-C3N4 exhibited much higher photocatalytic activity than that of pure mesoporous and bulk g-C3N4 for the degradation of rhodamine B under sunlight irradiation. Furthermore, the photocurrent and photoluminescence studies demonstrated that the deposition of Au nanoparticles on the surface of mesoporous g-C3N4 could effectively inhibit the recombination of photogenerated charge carriers leading to the enhanced photocatalytic activity. More importantly, the synthesized Au/mp-g-C3N4 nanosheets possess high reusability. Hence, Au/mp-g-C3N4 could be promising photoactive material for energy and environmental applications.
Resumo:
Propylsulfonic acid derivatised SBA-15 catalysts have been prepared by post modification of SBA-15 with mercaptopropyltrimethoxysilane (MPTMS) for the upgrading of a model pyrolysis bio-oil via acetic acid esterification with benzyl alcohol in toluene. Acetic acid conversion and the rate of benzyl acetate production was proportional to the PrSO3H surface coverage, reaching a maximum for a saturation adlayer. Turnover frequencies for esterification increase with sulfonic acid surface density, suggesting a cooperative effect of adjacent PrSO3H groups. Maximal acetic acid conversion was attained under acid-rich conditions with aromatic alcohols, outperforming Amberlyst or USY zeolites, with additional excellent water tolerance.
Resumo:
Mesopore incorporation into ZSM-5 enhances the dispersion of Pd nanoparticles throughout the hierarchical framework, significantly accelerating m-cresol conversion relative to a conventional microporous ZSM-5, and dramatically increasing selectivity towards the desired methylcyclohexane deoxygenated product. Increasing the acid site density further promotes m-cresol conversion and methylcyclohexane selectivity through efficient dehydration of the intermediate methylcyclohexanol.
Resumo:
This chapter provides a general overview of recent studies on catalytic conversion of fructose, glucose, and cellulose to platform chemicals over porous solid acid and base catalysts, including zeolites, ion-exchange resins, heteropoly acids, as well as structured carbon, silica, and metal oxide materials. Attention is focused on the dehydration of glucose and fructose to HMF, isomerization of glucose to fructose, hydrolysis of cellulose to sugar, and glycosidation of cellulose to alkyl glucosides. The correlation of porous structure, surface properties, and the strength or types of acid or base with the catalyst activity in these reactions is discussed in detail in this chapter.
Resumo:
Herein we demonstrate a facile template-free sonochemical strategy to synthesize mesoporous g-C3N4 with a high surface area and enhanced photocatalytic activity. The TEM and nitrogen adsorption–desorption studies confirm mesoporous structure in g-C3N4 body. The photocatalytic activity of mesoporous g-C3N4 is almost 5.5 times higher than that of bulk g-C3N4 under visible-light irradiation. The high photocatalytic performance of the mesoporous g-C3N4 was attributed to the much higher specific surface area, efficient adsorption ability and the unique interfacial mesoporous structure which can favour the absorption of light and separation of photoinduced electron–hole pairs more effectively. A possible photocatalytic mechanism was discussed by the radicals and holes trapping experiments. Interestingly, the synthesized mesoporous g-C3N4 possesses high reusability. Hence the mesoporous g-C3N4 can be a promising photocatalytic material for practical applications in water splitting as well as environmental remediation.
Resumo:
Porosity development of mesostructured colloidal silica nanoparticles is related to the removal of the organic templates and co-templates which is often carried out by calcination at high temperatures, 500-600 °C. In this study a mild detemplation method based on the oxidative Fenton chemistry has been investigated. The Fenton reaction involves the generation of OH radicals following a redox Fe3+/Fe2+ cycle that is used as catalyst and H2O2 as oxidant source. Improved material properties are anticipated since the Fenton chemistry comprises milder conditions than calcination. However, the general application of this methodology is not straightforward due to limitations in the hydrothermal stability of the particular system under study. The objective of this work is three-fold: 1) reducing the residual Fe in the resulting solid as this can be detrimental for the application of the material, 2) shortening the reaction time by optimizing the reaction temperature to minimize possible particle agglomeration, and finally 3) investigating the structural and textural properties of the resulting material in comparison to the calcined counterparts. It appears that the Fenton detemplation can be optimized by shortening the reaction time significantly at low Fe concentration. The milder conditions of detemplation give rise to enhanced properties in terms of surface area, pore volume, structural preservation, low Fe residue and high degree of surface hydroxylation; the colloidal particles are stable during storage. A relative particle size increase, expressed as 0.11%·h-1, has been determined.
Resumo:
This paper investigates the effect of silica addition on the structural, textural and acidic properties of an evaporation induced self-assembled (EISA) mesoporous alumina. Two silica addition protocols were applied while maintaining the EISA synthesis route. The first route is based on the addition of a Na-free colloidal silica suspension (Ludox®), and the second method consists of the co-hydrolysis of tetraethyl orthosilicate (TEOS) with aluminium tri-sec-butoxide, to favour a more intimate mixing of the Al- and Si-hydrolysed species. The properties of the so derived materials were compared to the SiO2-free counterpart. The SiO2 addition was always beneficial from a structural and textural standpoint. TEOS appears to have a truly promoting effect; the ordering, surface area and pore volume are all improved. For Ludox®, the enhancement comes from the formation of smaller pores by a densification of the structure. The crystallization of γ-alumina depends on the interaction between the Al- and Si-species in the mesophase. Ludox®-based materials achieved crystallization at 750 °C but the intimate mixing in the TEOS-based mesophases shows a suppression of the phase transformation by 50-100 °C, with respect to the SiO2-free counterpart. This reduces the textural features substantially. For all SiO2-modified materials, the enhancement in the surface area is not accompanied by a concomitant improvement of total acidity, and the formation of weak Lewis acid sites was promoted. These effects were ascribed to SiO2 migration to the surface that blocks part of the acidity.
Resumo:
A mild protocol that allows the template removal of soft un-aged silica nanoparticles was investigated. After oxidizing the organic template by Fenton chemistry, a good structural preservation is only achieved when the material is equilibrated and dried in a low-surface tension solvent. This avoids excessive capillary stress induced by the high surface tension of water, a major component in the Fenton reaction medium. The Fenton reaction should be carried out under mild conditions as well; otherwise the sample deteriorates by extensive hydrolysis, and capillary stress, and the structural ordering diminishes severely. We propose employing 10 ppm Fe concentration at 70 °C for 24 h for the cetyltrimethylammonium bromide template. The proposed protocol involves 2 steps resulting in an overall significantly higher pore volume attributed to the wider pores and limited particle agglomeration, while the calcined counterpart evidences aggregation and loss of the hexagonal ordering. n-BuOH exchange is unnecessary when the mesophase is stabilized by ageing, as the structure resists the water capillary stress. © The Royal Society of Chemistry 2013.