20 resultados para Machinery -- Automation
Resumo:
Discrepancies of materials, tools, and factory environments, as well as human intervention, make variation an integral part of the manufacturing process of any component. In particular, the assembly of large volume, aerospace parts is an area where significant levels of form and dimensional variation are encountered. Corrective actions can usually be taken to reduce the defects, when the sources and levels of variation are known. For the unknown dimensional and form variations, a tolerancing strategy is typically put in place in order to minimize the effects of production inconsistencies related to geometric dimensions. This generates a challenging problem for the automation of the corresponding manufacturing and assembly processes. Metrology is becoming a major contributor to being able to predict, in real time, the automated assembly problems related to the dimensional variation of parts and assemblies. This is done by continuously measuring dimensions and coordinate points, focusing on the product's key characteristics. In this paper, a number of metrology focused activities for large-volume aerospace products, including their implementation and application in the automation of manufacturing and assembly processes, are reviewed. This is done by using a case study approach within the assembly of large-volume aircraft wing structures.
Resumo:
Today, the question of how to successfully reduce supply chain costs whilst increasing customer satisfaction continues to be the focus of many firms. It is noted in the literature that supply chain automation can increase flexibility whilst reducing inefficiencies. However, in the dynamic and process driven environment of distribution, there is the absence of a cohesive automation approach to guide companies in improving network competitiveness. This paper aims to address the gap in the literature by developing a three-level framework automation application approach with the assistance of radio frequency identification (RFID) technology and returnable transport equipment (RTE). The first level considers the automation of data retrieval and highlights the benefits of RFID. The second level consists of automating distribution processes such as unloading and assembling orders. As the labour is reduced with the introduction of RFID enabled robots, the balance between automation and labour is discussed. Finally, the third level is an analysis of the decision-making process at network points and the application of cognitive automation to objects. A distribution network scenario is formed and used to illustrate network reconfiguration at each level. The research pinpoints that RFID enabled RTE offers a viable tool to assist supply chain automation. Further research is proposed in particular, the area of cognitive automation to aide with decision-making.
Resumo:
As the pressure continues to grow on Diamond and the world's synchrotrons for higher throughput of diffraction experiments, new and novel techniques are required for presenting micron dimension crystals to the X ray beam. Currently this task is both labour intensive and primarily a serial process. Diffraction measurements typically take milliseconds but sample preparation and presentation can reduce throughput down to 4 measurements an hour. With beamline waiting times as long as two years it is of key importance for researchers to capitalize on available beam time, generating as much data as possible. Other approaches detailed in the literature [1] [2] [3] are very much skewed towards automating, with robotics, the actions of a human protocols. The work detailed here is the development and discussion of a bottom up approach relying on SSAW self assembly, including material selection, microfluidic integration and tuning of the acoustic cavity to order the protein crystals.
Resumo:
As the pressure continues to grow on Diamond and the world's synchrotrons for higher throughput of diffraction experiments, new and novel techniques are required for presenting micron dimension crystals to the X ray beam. Currently this task is both labour intensive and primarily a serial process. Diffraction measurements typically take milliseconds but sample preparation and presentation can reduce throughput down to 4 measurements an hour. With beamline waiting times as long as two years it is of key importance for researchers to capitalize on available beam time, generating as much data as possible. Other approaches detailed in the literature [1] [2] [3] are very much skewed towards automating, with robotics, the actions of a human protocols. The work detailed here is the development and discussion of a bottom up approach relying on SSAW self assembly, including material selection, microfluidic integration and tuning of the acoustic cavity to order the protein crystals.