32 resultados para MOTOR FUNCTION MEASURE
Resumo:
Purpose: To investigate the correlation between tests of visual function and perceived visual ability recorded with a 'quality-of-life' questionnaire for patients with central field loss. Method: 12 females and 7 males (mean age = 53.1 years; Range = 23 - 80 years) with subfoveal neovascular membranes underwent a comprehensive assessment of visual function. Tests included unaided distance vision, high and low contrast distance logMAR visual acuity (VA), Pelli-Robson contrast senstivity (at 1m), near logMAR word VA and text reading speed. All tests were done both monocularly and binocularly. The patients also completed a 28 point questionnaire separated into a 'core' section consisting of general questions about perceived visual function and a 'module' section with specific questions on reading function. Results: Step-wise multiple regression analysis was used to determine which visual function tests were correlated with the patients's perceived visual function and to rank them in order of importance. The visual function test that explains most of the variance in both 'core' score (66%0 and the 'module' score (68%) of the questionnaire is low contrast VA in the better eye (P<0.001 in both cases). Further, the module score also accounts for a significant proportion of the variance (P<0.01) of the distance logMAR VA in both the better and worse eye, and the near logMAR in both the better eye and binocularly. Conclusions: The best predictor of both perceived reading ability and of general perceived visual ability in this study is low contrast logMAR VA. The results highlight that distance VA is not the only relevant measure of visual fucntion in relation to a patients's perceived visual performance and should not be considered a determinant of surgical or management success.
Resumo:
Relations between spatial attention and motor intention were investigated by means of an EEG potential elicited by shifting attention to a location in space as well as by the selection of a hand for responding. High-density recordings traced this potential to a common frontoparietal network activated by attentional orienting and by response selection. Within this network, parietal and frontal cortex were activated sequentially, followed by an anterior-to-posterior migration of activity culminating in the lateral occipital cortex. Based on temporal and polarity information provided by EEG, we hypothesize that the frontoparietal activation, evoked by directional information, updates a task-defined preparatory state by deselecting or inhibiting the behavioral option competing with the cued response side or the cued direction of attention. These results from human EEG demonstrate a direct EEG manifestation of the frontoparietal attention network previously identified in functional imaging. EEG reveals the time course of activation within this network and elucidates the generation and function of associated directing-attention EEG potentials. The results emphasize transient activation and a decision-related function of the frontoparietal attention network, contrasting with the sustained preparatory activation that is commonly inferred from neuroimaging.
Resumo:
We measure complex amplitude of scattered wave in the far field, and justify theoretically and numerically solution of the inverse scattering problem. This allows single-shot reconstructing of dielectric function distribution during direct femtosecond laser micro-fabrication.
Resumo:
The 19 channel Neuromagnetometer system in the Clinical Neurophysiology Unit at Aston University is a multi-channel system, unique in the United Kingdom. A bite bar head localisation and MRI co-registration strategy which enabled accurate and reproducible localisation of MEG data into cortical space was developed. This afforded the opportunity to study magnetic fields of the human cortex generated by stimulation of peripheral nerve, by stimulation of visceral sensory receptors and by those evoked through voluntary finger movement. Initially, a study of sensory-motor evoked data was performed in a healthy control population. The techniques developed were then applied to patients who were to undergo neurosurgical intervention for the treatment of epilepsy and I or space occupying lesions. This enabled both validation of the effective accuracy of source localisation using MEG as well as to determine the clinical value of MEG in presurgical assessment of functional localisation in human cortex. The studies in this thesis have demonstrated that MEG can repeatedly and reliably locate sources contained within a single gyrus and thus potentially differentiate between disparate gyral activation. This ability is critical in the clinical application of any functional imaging technique; which is yet to be fully validated by any other 'non-invasive' functional imaging methodology. The technique was also applied to the study of visceral sensory representation in the cortex which yielded important data about the multiple cortical representation of visceral sensory function.
Resumo:
This study investigated the detrimental effect of central field loss (CFL) on reading ability and general visual function. The aim was to improve the understanding of reading with eccentric retina in order that reading performances of individuals with CFL may be maximised. To improve visual ability of individuals with CFL, it is important to be able to accurately measure the outcome of any intervention. Various methods for determining visual function were therefore compared with perceived visual performance (as measured with a quality of life questionnaire) before and after surgical removal of choroidal new vessels (CNV) in macular disease patients. The results highlight the importance of low contrast measures (low contrast visual acuity and contrast sensitivity) when investigating perceived reading performance. Reading speed was found to be important for reflecting changes in general visual quality of life. Potential causes for reduced peripheral reading ability were investigated using both normally sighted and CFL subjects. For normally sighted subjects reading eccentrically with rapid serial visual presentation (RSVP) text, the inferior visual field was a better position (in terms of reading speed) for the presentation of the text. The size of the visual span was found to reduce with increasing eccentricity of fixation, providing a potential reason for reduced peripheral reading performances. The investigation of the ability to use context when reading with peripheral retina resulted in conflicting results. Studies in this thesis found both a reduction and no reduction in the ability of the peripheral retina to utilise context compared to the fovea. Individuals with long-term CFL showed no improvement in peripheral reading ability over that found for normally sighted subjects reading at the same eccentricity.
Resumo:
A methodology is presented which can be used to produce the level of electromagnetic interference, in the form of conducted and radiated emissions, from variable speed drives, the drive that was modelled being a Eurotherm 583 drive. The conducted emissions are predicted using an accurate circuit model of the drive and its associated equipment. The circuit model was constructed from a number of different areas, these being: the power electronics of the drive, the line impedance stabilising network used during the experimental work to measure the conducted emissions, a model of an induction motor assuming near zero load, an accurate model of the shielded cable which connected the drive to the motor, and finally the parasitic capacitances that were present in the drive modelled. The conducted emissions were predicted with an error of +/-6dB over the frequency range 150kHz to 16MHz, which compares well with the limits set in the standards which specify a frequency range of 150kHz to 30MHz. The conducted emissions model was also used to predict the current and voltage sources which were used to predict the radiated emissions from the drive. Two methods for the prediction of the radiated emissions from the drive were investigated, the first being two-dimensional finite element analysis and the second three-dimensional transmission line matrix modelling. The finite element model took account of the features of the drive that were considered to produce the majority of the radiation, these features being the switching of the IGBT's in the inverter, the shielded cable which connected the drive to the motor as well as some of the cables that were present in the drive.The model also took account of the structure of the test rig used to measure the radiated emissions. It was found that the majority of the radiation produced came from the shielded cable and the common mode currents that were flowing in the shield, and that it was feasible to model the radiation from the drive by only modelling the shielded cable. The radiated emissions were correctly predicted in the frequency range 30MHz to 200MHz with an error of +10dB/-6dB. The transmission line matrix method modelled the shielded cable which connected the drive to the motor and also took account of the architecture of the test rig. Only limited simulations were performed using the transmission line matrix model as it was found to be a very slow method and not an ideal solution to the problem. However the limited results obtained were comparable, to within 5%, to the results obtained using the finite element model.
Resumo:
In this study I investigated the mechanisms of neuronal network oscillatory activity in rat M1 using pharmacological manipulations and electrical stimulation protocols, employing the in vitro brain slice technique in rat and magnetoencephalography (MEG) in man. Co-application of kainic acid and carbachol generated in vitro beta oscillatory activity in all layers in M1. Analyses indicated that oscillations originated from deep layers and indicated significant involvement of GABAA receptors and gap junctions. A modulatory role of GABAB, NMDA, and dopamine receptors was also evident. Intracellular recordings from fast-spiking (FS) GABAergic inhibitory cells revealed phase-locked action potentials (APs) on every beta cycle. Glutamatergic excitatory regular-spiking (RS) and intrinsically-bursting (IB) cells both received phase locked inhibitory postsynaptic potentials, but did not fire APs on every cycle, suggesting the dynamic involvement of different pools of neurones in the overall population oscillations. Stimulation evoked activity at high frequency (HFS; 125Hz) evoked gamma oscillations and reduced ongoing beta activity. 20Hz stimulation promoted theta or gamma oscillations whilst 4Hz stimulation enhanced beta power at theta frequency. I also investigated the modulation of pathological slow wave (theta and beta) oscillatory activity using magnetoencephalography. Abnormal activity was suppressed by sub-sedative doses of GABAA receptor modulator zolpidem and the observed desynchronising effect correlated well with improved sensorimotor function. These studies indicate a fundamental role for inhibitory neuronal networks in the patterning beta activity and suggest that cortical HFS in PD re-patterns abnormally enhanced M1 network activity by modulating the activity of FS cells. Furthermore, pathological oscillation may be common to many neuropathologies and may be an important future therapeutic target.
Resumo:
OBJECTIVES: To determine whether the use of medications with possible and definite anticholinergic activity increases the risk of cognitive impairment and mortality in older people and whether risk is cumulative. DESIGN: A 2-year longitudinal study of participants enrolled in the Medical Research Council Cognitive Function and Ageing Study between 1991 and 1993. SETTING: Community-dwelling and institutionalized participants. PARTICIPANTS: Thirteen thousand four participants aged 65 and older. MEASUREMENTS: Baseline use of possible or definite anticholinergics determined according to the Anticholinergic Cognitive Burden Scale and cognition determined using the Mini-Mental State Examination (MMSE). The main outcome measure was decline in the MMSE score at 2 years. RESULTS: At baseline, 47% of the population used a medication with possible anticholinergic properties, and 4% used a drug with definite anticholinergic properties. After adjusting for age, sex, educational level, social class, number of nonanticholinergic medications, number of comorbid health conditions, and cognitive performance at baseline, use of medication with definite anticholinergic effects was associated with a 0.33-point greater decline in MMSE score (95% confidence interval (CI)=0.03–0.64, P=.03) than not taking anticholinergics, whereas the use of possible anticholinergics at baseline was not associated with further decline (0.02, 95% CI=-0.14–0.11, P=.79). Two-year mortality was greater for those taking definite (OR=1.68; 95% CI=1.30–2.16; P<.001) and possible (OR=1.56; 95% CI=1.36–1.79; P<.001) anticholinergics. CONCLUSION: The use of medications with anticholinergic activity increases the cumulative risk of cognitive impairment and mortality.
Resumo:
We measure complex amplitude of scattered wave in the far field, and justify theoretically and numerically solution of the inverse scattering problem. This allows single-shot reconstructing of dielectric function distribution during direct femtosecond laser micro-fabrication.
Resumo:
Using a modified deprivation (or poverty) function, in this paper, we theoretically study the changes in poverty with respect to the 'global' mean and variance of the income distribution using Indian survey data. We show that when the income obeys a log-normal distribution, a rising mean income generally indicates a reduction in poverty while an increase in the variance of the income distribution increases poverty. This altruistic view for a developing economy, however, is not tenable anymore once the poverty index is found to follow a pareto distribution. Here although a rising mean income indicates a reduction in poverty, due to the presence of an inflexion point in the poverty function, there is a critical value of the variance below which poverty decreases with increasing variance while beyond this value, poverty undergoes a steep increase followed by a decrease with respect to higher variance. Identifying this inflexion point as the poverty line, we show that the pareto poverty function satisfies all three standard axioms of a poverty index [N.C. Kakwani, Econometrica 43 (1980) 437; A.K. Sen, Econometrica 44 (1976) 219] whereas the log-normal distribution falls short of this requisite. Following these results, we make quantitative predictions to correlate a developing with a developed economy. © 2006 Elsevier B.V. All rights reserved.
Resumo:
The early stages of dieting to lose weight have been associated with neuro-psychological impairments. Previous work has not elucidated whether these impairments are a function solely of unsupported or supported dieting. Raised cortico-steroid levels have been implicated as a possible causal mechanism. Healthy, overweight, pre-menopausal women were randomised to one of three conditions in which they dieted either as part of a commercially available weight loss group, dieted without any group support or acted as non-dieting controls for 8 weeks. Testing occurred at baseline and at 1, 4 and 8 weeks post baseline. During each session, participants completed measures of simple reaction time, motor speed, vigilance, immediate verbal recall, visuo-spatial processing and (at Week 1 only) executive function. Cortisol levels were gathered at the beginning and 30 min into each test session, via saliva samples. Also, food intake was self-recorded prior to each session and fasting body weight and percentage body fat were measured at each session. Participants in the unsupported diet condition displayed poorer vigilance performance (p=0.001) and impaired executive planning function (p=0.013) (along with a marginally significant trend for poorer visual recall (p=0.089)) after 1 week of dieting. No such impairments were observed in the other two groups. In addition, the unsupported dieters experienced a significant rise in salivary cortisol levels after 1 week of dieting (p<0.001). Both dieting groups lost roughly the same amount of body mass (p=0.011) over the course of the 8 weeks of dieting, although only the unsupported dieters experienced a significant drop in percentage body fat over the course of dieting (p=0.016). The precise causal nature of the relationship between stress, cortisol, unsupported dieting and cognitive function is, however, uncertain and should be the focus of further research. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
We measure complex amplitude of scattered wave in the far field, and justify theoretically and numerically solution of the inverse scattering problem. This allows single-shot reconstructing of dielectric function distribution during direct femtosecond laser micro-fabrication.
Resumo:
Background/aim: The technique of photoretinoscopy is unique in being able to measure the dynamics of the oculomotor system (ocular accommodation, vergence, and pupil size) remotely (working distance typically 1 metre) and objectively in both eyes simultaneously. The aim af this study was to evaluate clinically the measurement of refractive error by a recent commercial photoretinoscopic device, the PowerRefractor (PlusOptiX, Germany). Method: The validity and repeatability of the PowerRefractor was compared to: subjective (non-cycloplegic) refraction on 100 adult subjects (mean age 23.8 (SD 5.7) years) and objective autarefractian (Shin-Nippon SRW-5000, Japan) on 150 subjects (20.1 (4.2) years). Repeatability was assessed by examining the differences between autorefractor readings taken from each eye and by re-measuring the objective prescription of 100 eyes at a subsequent session. Results: On average the PowerRefractor prescription was not significantly different from the subjective refraction, although quite variable (difference -0.05 (0.63) D, p = 0.41) and more negative than the SRW-5000 prescription (by -0.20 (0.72) D, p<0.001). There was no significant bias in the accuracy of the instrument with regard to the type or magnitude of refractive error. The PowerRefractor was found to be repeatable over the prescription range of -8.75D to +4.00D (mean spherical equivalent) examined. Conclusion: The PowerRefractor is a useful objective screening instrument and because of its remote and rapid measurement of both eyes simultaneously is able to assess the oculomotor response in a variety of unrestricted viewing conditions and patient types.
Resumo:
Congenital nystagmus (CN) is an ocular-motor disorder characterised by involuntary, conjugated ocular oscillations and its pathogenesis is still under investigation. This kind of nystagmus is termed congenital (or infantile) since it could be present at birth or it can arise in the first months of life. Most of CN patients show a considerable decrease of their visual acuity: image fixation on the retina is disturbed by nystagmus continuous oscillations, mainly horizontal. However, the image of a given target can still be stable during short periods in which eye velocity slows down while the target image is placed onto the fovea (called foveation intervals). To quantify the extent of nystagmus, eye movement recording are routinely employed, allowing physicians to extract and analyse nystagmus main features such as waveform shape, amplitude and frequency. Using eye movement recording, it is also possible to compute estimated visual acuity predictors: analytical functions which estimates expected visual acuity using signal features such as foveation time and foveation position variability. Use of those functions extend the information from typical visual acuity measurement (e.g. Landolt C test) and could be a support for therapy planning or monitoring. This study focuses on detection of CN patients' waveform type and on foveation time measure. Specifically, it proposes a robust method to recognize cycles corresponding to the specific CN waveform in the eye movement pattern and, for those cycles, evaluate the exact signal tracts in which a subject foveates. About 40 eyemovement recordings, either infrared-oculographic or electrooculographic, were acquired from 16 CN subjects. Results suggest that the use of an adaptive threshold applied to the eye velocity signal could improve the estimation of slow phase start point. This can enhance foveation time computing and reduce influence of repositioning saccades and data noise on the waveform type identification.
Resumo:
Evidence of the relationship between altered cognitive function and depleted Fe status is accumulating in women of reproductive age but the degree of Fe deficiency associated with negative neuropsychological outcomes needs to be delineated. Data are limited regarding this relationship in university women in whom optimal cognitive function is critical to academic success. The aim of the present study was to examine the relationship between body Fe, in the absence of Fe-deficiency anaemia, and neuropsychological function in young college women. Healthy, non-Anaemic undergraduate women (n 42) provided a blood sample and completed a standardised cognitive test battery consisting of one manual (Tower of London (TOL), a measure of central executive function) and five computerised (Bakan vigilance task, mental rotation, simple reaction time, immediate word recall and two-finger tapping) tasks. Women's body Fe ranged from - 4·2 to 8·1 mg/kg. General linear model ANOVA revealed a significant effect of body Fe on TOL planning time (P= 0.002). Spearman's correlation coefficients showed a significant inverse relationship between body Fe and TOL planning time for move categories 4 (r - 0.39, P= 0.01) and 5 (r - 0.47, P= 0.002). Performance on the computerised cognitive tasks was not affected by body Fe level. These findings suggest that Fe status in the absence of anaemia is positively associated with central executive function in otherwise healthy college women. Copyright © The Authors 2012.