19 resultados para MELANOTROPIC PEPTIDES
Resumo:
TAP is responsible for the transit of peptides from the cytosol to the lumen of the endoplasmic reticulum. In an immunological context, this event is followed by the binding of peptides to MHC molecules before export to the cell surface and recognition by T cells. Because TAP transport precedes MHC binding, TAP preferences may make a significant contribution to epitope selection. To assess the impact of this preselection, we have developed a scoring function for TAP affinity prediction using the additive method, have used it to analyze and extend the TAP binding motif, and have evaluated how well this model acts as a preselection step in predicting MHC binding peptides. To distinguish between MHC alleles that are exclusively dependent on TAP and those exhibiting only a partial dependence on TAP, two sets of MHC binding peptides were examined: HLA-A*0201 was selected as a representative of partially TAP-dependent HLA alleles, and HLA-A*0301 represented fully TAP-dependent HLA alleles. TAP preselection has a greater impact on TAP-dependent alleles than on TAP-independent alleles. The reduction in the number of nonbinders varied from 10% (TAP-independent) to 33% (TAP-dependent), suggesting that TAP preselection is an important component in the successful in silico prediction of T cell epitopes.
Resumo:
The ability to define and manipulate the interaction of peptides with MHC molecules has immense immunological utility, with applications in epitope identification, vaccine design, and immunomodulation. However, the methods currently available for prediction of peptide-MHC binding are far from ideal. We recently described the application of a bioinformatic prediction method based on quantitative structure-affinity relationship methods to peptide-MHC binding. In this study we demonstrate the predictivity and utility of this approach. We determined the binding affinities of a set of 90 nonamer peptides for the MHC class I allele HLA-A*0201 using an in-house, FACS-based, MHC stabilization assay, and from these data we derived an additive quantitative structure-affinity relationship model for peptide interaction with the HLA-A*0201 molecule. Using this model we then designed a series of high affinity HLA-A2-binding peptides. Experimental analysis revealed that all these peptides showed high binding affinities to the HLA-A*0201 molecule, significantly higher than the highest previously recorded. In addition, by the use of systematic substitution at principal anchor positions 2 and 9, we showed that high binding peptides are tolerant to a wide range of nonpreferred amino acids. Our results support a model in which the affinity of peptide binding to MHC is determined by the interactions of amino acids at multiple positions with the MHC molecule and may be enhanced by enthalpic cooperativity between these component interactions.
Resumo:
Peptides fulfill many roles in immunology, yet none are more important than their role as immunogenic epitopes driving the adaptive immune response, our ultimate bulwark against infectious disease. Peptide epitopes are mediated primarily by their interaction with major histocompatibility complexes (T-cell epitopes) and antibodies (B-cell epitopes). As pathogen genomes continue to be revealed, both experimental and computational epitope mapping are becoming crucial tools in vaccine discovery1,2. Immunoinformatics offers many tools, techniques and approaches for in silico epitope characterization, which is capable of greatly accelerating epitope design. © 2013 Nature America, Inc. All rights reserved.
Resumo:
Saturation mutagenesis is a powerful tool in modern protein engineering, which permits key residues within a protein to be targeted in order to potentially enhance specific functionalities. However, the creation of large libraries using conventional saturation mutagenesis with degenerate codons (NNN or NNK/S) has inherent redundancy and consequent disparities in codon representation. Therefore, both chemical (trinucleotide phosphoramidites) and biological methods (sequential, enzymatic single codon additions) of non-degenerate saturation mutagenesis have been developed in order to combat these issues and so improve library quality. Large libraries with multiple saturated positions can be limited by the method used to screen them. Although the traditional screening method of choice, cell-dependent methods, such as phage display, are limited by the need for transformation. A number of cell-free screening methods, such as CIS display, which link the screened phenotype with the encoded genotype, have the capability of screening libraries with up to 1014 members. This thesis describes the further development of ProxiMAX technology to reduce library codon bias and its integration with CIS display to screen the resulting library. Synthetic MAX oligonucleotides are ligated to an acceptor base sequence, amplified, and digested, subsequently adding a randomised codon to the acceptor, which forms an iterative cycle using the digested product of the previous cycle as the base sequence for the next. Initial use of ProxiMAX highlighted areas of the process where changes could be implemented in order to improve the codon representation in the final library. The refined process was used to construct a monomeric anti-NGF peptide library, based on two proprietary dimeric peptides (Isogenica) that bind NGF. The resulting library showed greatly improved codon representation that equated to a theoretical diversity of ~69%. The library was subsequently screened using CIS display and the discovered peptides assessed for NGF-TrkA inhibition by ELISA. Despite binding to TrkA, these peptides showed lower levels of inhibition of the NGF-TrkA interaction than the parental dimeric peptides, highlighting the importance of dimerization for inhibition of NGF-TrkA binding.