22 resultados para MEASUREMENT DEVICE
Resumo:
Background/aim: The technique of photoretinoscopy is unique in being able to measure the dynamics of the oculomotor system (ocular accommodation, vergence, and pupil size) remotely (working distance typically 1 metre) and objectively in both eyes simultaneously. The aim af this study was to evaluate clinically the measurement of refractive error by a recent commercial photoretinoscopic device, the PowerRefractor (PlusOptiX, Germany). Method: The validity and repeatability of the PowerRefractor was compared to: subjective (non-cycloplegic) refraction on 100 adult subjects (mean age 23.8 (SD 5.7) years) and objective autarefractian (Shin-Nippon SRW-5000, Japan) on 150 subjects (20.1 (4.2) years). Repeatability was assessed by examining the differences between autorefractor readings taken from each eye and by re-measuring the objective prescription of 100 eyes at a subsequent session. Results: On average the PowerRefractor prescription was not significantly different from the subjective refraction, although quite variable (difference -0.05 (0.63) D, p = 0.41) and more negative than the SRW-5000 prescription (by -0.20 (0.72) D, p<0.001). There was no significant bias in the accuracy of the instrument with regard to the type or magnitude of refractive error. The PowerRefractor was found to be repeatable over the prescription range of -8.75D to +4.00D (mean spherical equivalent) examined. Conclusion: The PowerRefractor is a useful objective screening instrument and because of its remote and rapid measurement of both eyes simultaneously is able to assess the oculomotor response in a variety of unrestricted viewing conditions and patient types.
Resumo:
We present the first spatial scanning system using wavelength-spatial transformation of chromatic dispersion device. Optical probe used in fiber optic interferometer for surface measurement is demonstrated by using diffraction grating and wavelength scanning technique.
Resumo:
Background: A new commercially available device (IOLMaster, Zeiss Instruments) provides high resolution non-contact measurements of axial length (using partial coherent interferometry), anterior chamber depth, and corneal radius (using image analysis). The study evaluates the validity and repeatability of these measurements and compares the findings with those obtained from instrumentation currently used in clinical practice. Method: Measurements were taken on 52 subjects (104 eyes) aged 18-40 years with a range of mean spherical refractive error from +7.0 D to -9.50 D. IOLMaster measurements of anterior chamber depth and axial length were compared with A-scan applanation ultrasonography (Storz Omega) and those for corneal radius with a Javal-Schiötz keratometer (Topcon) and an EyeSys corneal videokeratoscope. Results: Axial length: the difference between IOLMaster and ultrasound measures was insignificant (0.02 (SD 0.32) mm, p = 0.47) with no bias across the range sampled (22.40-27.99 mm). Anterior chamber depth: significantly shorter depths than ultrasound were found with the IOLMaster (-0.06 (0.25) mm, p <0.02) with no bias across the range sampled (2.85-4.40 mm). Corneal radius: IOLMaster measurements matched more closely those of the keratometer than those of the videokeratoscope (mean difference -0.03 v -0.06 mm respectively), but were more variable (95% confidence 0.13 v 0.07 mm). The repeatability of all the above IOLMaster biometric measures was found to be of a high order with no significant bias across the measurement ranges sampled. Conclusions: The validity and repeatability of measurements provided by the IOLMaster will augment future studies in ocular biometry.
Resumo:
Although fiber Bragg gratings (FBGs) have been widely used as advanced optical sensors, the cross-sensitivity between temperature and strain has complicated independent measurement procedures for these two measurands. We report here, for the first time to our knowledge, the results of a systematic investigation of the dependence of both temperature and strain sensitivities on the grating type, including the well-known Type I, Type IIA, and a new type which we have designated Type IA, using both hydrogen-free and hydrogenated B/Ge codoped fibers. We have identified distinct sensitivity characteristics for each grating type, and we have utilised them to implement a novel dual-grating, dual-parameter sensor device with performance superior to that of previously reported grating-based structures.
Resumo:
Bio-impedance analysis (BIA) provides a rapid, non-invasive technique for body composition estimation. BIA offers a convenient alternative to standard techniques such as MRI, CT scan or DEXA scan for selected types of body composition analysis. The accuracy of BIA is limited because it is an indirect method of composition analysis. It relies on linear relationships between measured impedance and morphological parameters such as height and weight to derive estimates. To overcome these underlying limitations of BIA, a multi-frequency segmental bio-impedance device was constructed through a series of iterative enhancements and improvements of existing BIA instrumentation. Key features of the design included an easy to construct current-source and compact PCB design. The final device was trialled with 22 human volunteers and measured impedance was compared against body composition estimates obtained by DEXA scan. This enabled the development of newer techniques to make BIA predictions. To add a ‘visual aspect’ to BIA, volunteers were scanned in 3D using an inexpensive scattered light gadget (Xbox Kinect controller) and 3D volumes of their limbs were compared with BIA measurements to further improve BIA predictions. A three-stage digital filtering scheme was also implemented to enable extraction of heart-rate data from recorded bio-electrical signals. Additionally modifications have been introduced to measure change in bio-impedance with motion, this could be adapted to further improve accuracy and veracity for limb composition analysis. The findings in this thesis aim to give new direction to the prediction of body composition using BIA. The design development and refinement applied to BIA in this research programme suggest new opportunities to enhance the accuracy and clinical utility of BIA for the prediction of body composition analysis. In particular, the use of bio-impedance to predict limb volumes which would provide an additional metric for body composition measurement and help distinguish between fat and muscle content.
Resumo:
A dual-parameter optical sensor has been realized by UV-writing a long-period and a Bragg grating structure in D-fiber. The hybrid configuration permits the detection of the temperature from the latter and measuring the external refractive index from the former responses, respectively. The employment of the D-fiber allows as effective modification and enhancement of the device sensitivity by cladding etching. The grating sensor has been used to measure the concentrations of aqueous sugar solutions, demonstrating the potential capability to detect concentration changes as small as 0.01%.
Resumo:
This paper shows how the angular uncertainties can be determined for a rotary-laser automatic theodolite of the type used in (indoor-GPS) iGPS networks. Initially, the fundamental physics of the rotating head device is used to propagate uncertainties using Monte Carlo simulation. This theoretical element of the study shows how the angular uncertainty is affected by internal parameters, the actual values of which are estimated. Experiments are then carried out to determine the actual uncertainty in the azimuth angle. Results are presented that show that uncertainty decreases with sampling duration. Other significant findings are that uncertainty is relatively constant throughout the working volume and that the uncertainty value is not dependent on the size of the reference angle. © 2009 IMechE.