29 resultados para Low cost analog test
Resumo:
Recently, the service industry has seen a low-cost sector emerge alongside the traditional full-service sector. We explored whether these business models have different implications for employee cooperation, one factor that plays an important role in organizational functioning. Drawing on the social identity perspective, we argue that employees will identify less strongly with the lower-status, low-cost organizations, reducing their intrinsic motivation for such cooperation. We tested these relationships among employees in Thailand's airline industry. In line with expectations, flight attendants working for low-cost airlines (N = 77) perceived their organizations to have lower status than those working for the full-service airlines (N = 77), and this was associated with reduced organizational identification. This in turn predicted lower levels of organizational citizenship behaviour and a stronger desire for organizational exit. © 2010 Hogrefe Publishing.
Resumo:
The burgeoning research into altruism and helping behaviour has examined the effect of many variables that enhance or inhibit helpfulness, but little attention has been given to the influence of culture. In the present research, data on various aspects of helping behaviour were collected in both the UK and the Sudan so that the importance of cultural influences could be investigated. In addition this research also tested the validity of current models of helping. In a repertory grid study, urgency and cost emerged as the main constructs people in the two countries use to distinguish between various helpful situations. A laboratory experiment designed to test existing models of intervention behaviour found significant main effects of country, group, size, cost and urgency; and a group size/urgency interaction. Subjects in the Sudan intervened faster than subjects in the UK; lone subjects intervened faster than subjects in small and large groups; subjects in low cost intervened faster than subjects in high cost conditions; and subjects in high urgency intervened faster than subjects in low urgency conditions. Group size effect was stronger in low than in high urgency conditions. Two field studies further investigated the effect of urgency and cost in urban-nonurban context. Significant main effects of urgency and cost were found in cities but not in towns; and people in cities were less helpful than people in towns. A questionnaire survey found that in both countries there were significant urban-nonurban differences in the incidence of reported social contacts and exchange of helpful acts between acquaintances, neighbours and strangers. However, there were no urban-nonurban differences between relatives and close friends. Finally, attitudes to altruism and helpfulness did not differ between the two countries or between urban and nonurban residents. The results highlight the need to incorporate urgency and cultural variables in theoretical models of helping behaviour.
Resumo:
The initial aim of this project was to develop a non-contact fibre optic based displacement sensor to operate in the harsh environment of a 'Light Gas Gun' (LGG), which can 'fire' small particles at velocities ranging from 1-8.4 km/s. The LGG is used extensively for research in aerospace to analyze the effects of high speed impacts on materials. Ideally the measurement should be made close to the centre of the impact to minimise corruption of the data from edge effects and survive the impact. A further requirement is that it should operate at a stand-off distance of ~ 8cm. For these reasons we chose to develop a pseudo con-focal intensity sensor, which demonstrated resolution comparable with conventional PVDF sensors combined with high survivability and low cost. A second sensor was developed based on 'Fibre Bragg Gratings' (FBG) which although requiring contact with the target the low weight and very small contact area had minimal effect on the dynamics of the target. The FBG was mounted either on the surface of the target or tangentially between a fixed location. The output signals from the FBG were interrogated in time by a new method. Measurements were made on composite and aluminium plates in the LGG and on low speed drop tests. The particle momentum for the drop tests was chosen to be similar to that of the particles used in the LGG.
Resumo:
Structural Health Monitoring (SHM) ensures the structural health and safety of critical structures covering a wide range of application areas. This thesis presents novel, low-cost and good-performance fibre Bragg grating (FBG) based systems for detection of Acoustic Emission (AE) in aircraft structures, which is a part of SHM. Importantly a key aim, during the design of these systems, was to produce systems that were sufficiently small to install in an aircraft for lifetime monitoring. Two important techniques for monitoring high frequency AE that were developed as a part of this research were, Quadrature recombination technique and Active tracking technique. Active tracking technique was used extensively and was further developed to overcome the limitations that were observed while testing it at several test facilities and with different optical fibre sensors. This system was able to eliminate any low frequency spectrum shift due to environmental perturbation and keeps the sensor always working at optimum operation point. This is highly desirable in harsh industrial and operationally active environments. Experimental work carried out in the laboratory has proved that such systems can be used for high frequency detection and have capability to detect up to 600 kHz. However, the range of frequency depends upon the requirement and design of the interrogation system as the system can be altered accordingly for different applications. Several optical fibre configurations for wavelength detection were designed during the course of this work along with industrial partners. Fibre Bragg grating Fabry-Perot (FBG-FP) sensors have shown higher sensitivity and usability than the uniform FBGs to be used with such system. This was shown experimentally. The author is certain that further research will lead to development of a commercially marketable product and the use of active tracking systems can be extended in areas of healthcare, civil infrastructure monitoring etc. where it can be deployed. Finally, the AE detection system has been developed to aerospace requirements and was tested at NDT & Testing Technology test facility based at Airbus, Filton, UK on A350 testing panels.
Resumo:
Optical differentiators constitute a basic device for analog all-optical signal processing [1]. Fiber grating approaches, both fiber Bragg grating (FBG) and long period grating (LPG), constitute an attractive solution because of their low cost, low insertion losses, and full compatibility with fiber optic systems. A first order differentiator LPG approach was proposed and demonstrated in [2], but FBGs may be preferred in applications with a bandwidth up to few nm because of the extreme sensitivity of LPGs to environmental fluctuations [3]. Several FBG approaches have been proposed in [3-6], requiring one or more additional optical elements to create a first-order differentiator. A very simple, single optical element FBG approach was proposed in [7] for first order differentiation, applying the well-known logarithmic Hilbert transform relation of the amplitude and phase of an FBG in transmission [8]. Using this relationship in the design process, it was theoretically and numerically demonstrated that a single FBG in transmission can be designed to simultaneously approach the amplitude and phase of a first-order differentiator spectral response, without need of any additional elements. © 2013 IEEE.
Resumo:
The initial aim of this project was to develop a non-contact fibre optic based displacement sensor to operate in the harsh environment of a 'Light Gas Gun' (LGG), which can 'fire' small particles at velocities ranging from 1-8.4 km/s. The LGG is used extensively for research in aerospace to analyze the effects of high speed impacts on materials. Ideally the measurement should be made close to the centre of the impact to minimise corruption of the data from edge effects and survive the impact. A further requirement is that it should operate at a stand-off distance of ~ 8cm. For these reasons we chose to develop a pseudo con-focal intensity sensor, which demonstrated resolution comparable with conventional PVDF sensors combined with high survivability and low cost. A second sensor was developed based on 'Fibre Bragg Gratings' (FBG) which although requiring contact with the target the low weight and very small contact area had minimal effect on the dynamics of the target. The FBG was mounted either on the surface of the target or tangentially between a fixed location. The output signals from the FBG were interrogated in time by a new method. Measurements were made on composite and aluminium plates in the LGG and on low speed drop tests. The particle momentum for the drop tests was chosen to be similar to that of the particles used in the LGG.
Resumo:
A valuable alternative to traditional diagnostic tool to record fetal heart rate, to monitor the general fetal wellbeing, is fetal phonocardiography, a passive and low cost acoustic recording of fetal heart sounds. In this paper, it is presented a simulating software of fetal phonocardiographic signals relative to different fetal physiological states and recording conditions (for example different kinds and levels of noise). This software can be useful to test and assess fetal heart rate extraction algorithms from fetal phonocardiographic recordings and as a teaching tool for demonstration to medical students and others. © 2010 IEEE.
Resumo:
A novel low-cost photonic PON-to-RoF bridge is presented, allowing simultaneous wireline and wireless multi-Gbps data transmission with minor impact on deployed PON networks. Simulation results show that the proposed scheme does not require narrow-linewidth lasers when envelope detector mobile terminals are used, since the transmission performance is not limited by the phase noise but by the RIN and the frequency difference between the two beating lasers. © 2013 IEEE.
Resumo:
Objective: To test the practicality and effectiveness of cheap, ubiquitous, consumer-grade smartphones to discriminate Parkinson’s disease (PD) subjects from healthy controls, using self-administered tests of gait and postural sway. Background: Existing tests for the diagnosis of PD are based on subjective neurological examinations, performed in-clinic. Objective movement symptom severity data, collected using widely-accessible technologies such as smartphones, would enable the remote characterization of PD symptoms based on self-administered, behavioral tests. Smartphones, when backed up by interviews using web-based videoconferencing, could make it feasible for expert neurologists to perform diagnostic testing on large numbers of individuals at low cost. However, to date, the compliance rate of testing using smart-phones has not been assessed. Methods: We conducted a one-month controlled study with twenty participants, comprising 10 PD subjects and 10 controls. All participants were provided identical LG Optimus S smartphones, capable of recording tri-axial acceleration. Using these smartphones, patients conducted self-administered, short (less than 5 minute) controlled gait and postural sway tests. We analyzed a wide range of summary measures of gait and postural sway from the accelerometry data. Using statistical machine learning techniques, we identified discriminating patterns in the summary measures in order to distinguish PD subjects from controls. Results: Compliance was high all 20 participants performed an average of 3.1 tests per day for the duration of the study. Using this test data, we demonstrated cross-validated sensitivity of 98% and specificity of 98% in discriminating PD subjects from healthy controls. Conclusions: Using consumer-grade smartphone accelerometers, it is possible to distinguish PD from healthy controls with high accuracy. Since these smartphones are inexpensive (around $30 each) and easily available, and the tests are highly non-invasive and objective, we envisage that this kind of smartphone-based testing could radically increase the reach and effectiveness of experts in diagnosing PD.
Resumo:
A cost-effective radio over fiber system to up-convert and transmit multigigabit signals at 60 GHz is presented. A low intermediate frequency OFDM signal is used to directly modulate a laser, which is combined with an independent unmodulated laser. The generated millimeter wave frequency can be adjusted by tuning the frequency separation between the lasers. Since no external modulator is required, this technique is low-cost and it is easily integrable in a single chip. In this paper, we present numerical results showing the feasibility of generating an IEEE 802.15.3c compliant 3.5-Gbps 60-GHz OFDM. We show that received signal quality is not limited by the lasers' linewidth but by the relative intensity noise. © 2013 IEEE.
Resumo:
Desalination is a costly means of providing freshwater. Most desalination plants use either reverse osmosis (RO) or thermal distillation. Both processes have drawbacks: RO is efficient but uses expensive electrical energy; thermal distillation is inefficient but uses less expensive thermal energy. This work aims to provide an efficient RO plant that uses thermal energy. A steam-Rankine cycle has been designed to drive mechanically a batch-RO system that achieves high recovery, without the high energy penalty typically incurred in a continuous-RO system. The steam may be generated by solar panels, biomass boilers, or as an industrial by-product. A novel mechanical arrangement has been designed for low cost, and a steam-jacketed arrangement has been designed for isothermal expansion and improved thermodynamic efficiency. Based on detailed heat transfer and cost calculations, a gain output ratio of 69-162 is predicted, enabling water to be treated at a cost of 71 Indian Rupees/m3 at small scale. Costs will reduce with scale-up. Plants may be designed for a wide range of outputs, from 5 m3/day, up to commercial versions producing 300 m3/day of clean water from brackish groundwater.
Resumo:
This paper presents the development and experimental validation of a novel angular velocity observer-based field-oriented control algorithm for a promising low-cost brushless doubly fed reluctance generator (BDFRG) in wind power applications. The BDFRG has been receiving increasing attention because of the use of partially rated power electronics, the high reliability of brushless design, and competitive performance to its popular slip-ring counterpart, the doubly fed induction generator. The controller viability has been demonstrated on a BDFRG laboratory test facility for emulation of variable speed and loading conditions of wind turbines or pump drives.
Resumo:
Extensive numerical investigations are undertaken to analyze and compare, for the first time, the performance, techno-economy, and power consumption of three-level electrical Duobinary, optical Duobinary, and PAM-4 modulation formats as candidates for high-speed next-generation PONs supporting downstream 40 Gb/s per wavelength signal transmission over standard SMFs in C-band. Optimization of transceiver bandwidths are undertaken to show the feasibility of utilizing low-cost and band-limited components to support next-generation PON transmissions. The effect of electro-absorption modulator chirp is examined for electrical Duobinary and PAM-4. Electrical Duobinary and optical Duobinary are powerefficient schemes for smaller transmission distances of 10 km SMFs and optical Duobinary offers the best receiver sensitivity albeit with a relatively high transceiver cost. PAM-4 shows the best power budget and costefficiency for larger distances of around 20 km, although it consumes more power. Electrical Duobinary shows the best trade-off between performance, cost and power dissipation.
Resumo:
Switched reluctance motors (SRMs) are gaining in popularity because of their robustness, low cost, and excellent high-speed characteristics. However, they are known to cause vibration and noise primarily due to the radial pulsating force resulting from their double-saliency structure. This paper investigates the effect of skewing the stator and/or rotor on the vibration reduction of the three-phase SRMs by developing four 12/8-pole SRMs, including a conventional SRM, a skewed rotor-SRM (SR-SRM), a skewed stator-SRM (SS-SRM), and a skewed stator and rotor-SRM (SSR-SRM). The radial force distributed on the stator yoke under different skewing angles is extensively studied by the finite-element method and experimental tests on the four prototypes. The inductance and torque characteristics of the four motors are also compared, and a control strategy by modulating the turn-ON and turn-OFF angles for the SR-SRM and the SS-SRM are also presented. Furthermore, experimental results validate the numerical models and the effectiveness of the skewing in reducing the motor vibration. Test results also suggest that skewing the stator is more effective than skewing the rotor in the SRMs.