49 resultados para Londonderry (GB)
Resumo:
We present a novel differential phase shift keying receiver design under strong optical filtering. The receiver design is based on the different offset filtering performances of the output ports of the NRZ-DPSK Mach Zehnder Interferometer. The asymmetrical filtered receiver design can significantly increase performance by 2 dB in calculated Q for an OSNR of 15 dB.
Resumo:
Direct computation of the bit-error rate (BER) and laboratory experiments are used to assess the performance of a non-slope matched transoceanic submarine transmission link operating at 20Gb/s channel rate and employing return-to-zero differential-phase shift keying (RZ-DPSK) signal modulation. Using this system as an example, we compare the accuracies of the existing theoretical approaches to the BER estimation for the RZ-DPSK format.
Resumo:
In this work, we analyzed by means of numerical and laboratory experiments the resilience of 40 Gb/s amplitude shift keying modulation formats to transmission impairments in standard single-mode fiber lines as well as to optical filtering introduced by the optical add/drop multiplexer cascade. Our study is a pre-requisite to assess the implementation of cost-effective 40 Gb/s modulation technology in next generation high bit-rate robust optical transport networks.
Resumo:
In this work we present extensive comparisons between numerical modelling and experimental measurements of the transmission performance of either CSRZ-ASK or CSRZ-DPSK modulation formats for 40-Gb/s WDM ULH systems on UltraWave (TM) fiber spans with all-Raman amplification. We numerically optimised the amplification and the signal format parameters for both CSRZ-DPSK and CSRZ-ASK formats. Numerical and experimental results show that, in a properly optimized transmission link, the DPSK format permits to double the transmission distance ( for a given BER level) with respect to the ASK format, while keeping a substantial OSNR margin ( on ASK modulation) after the propagation in the fiber line. Our comparison between numerical and experimental results permits to identify what is the most suitable BER estimator in assessing the transmission performance when using the DPSK format. (c) 2007 Optical Society of America.
Resumo:
This paper numerically analyzes the performances of a 2R (reamplification and reshaping) regenerator based on a nonlinear optical loop mirror and a 3R (reamplification, reshaping, and retiming) regenerator using a nonlinearly enhanced amplitude modulator in 40-Gb/s standard single-mode fiber (SMF)-based optical networks with large amplifier spacing. The characteristics of one- (600 km of SMF) and two-step regeneration are examined and the feasibility of wavelength-division multiplexing operation is demonstrated. © 2005 IEEE.
Resumo:
We analyze a soliton-like phase-shift keying 40-Gb/s transmission system using cascaded in-line semiconductor optical amplifiers. Numerical optimization of the proposed soliton-like regime is presented. © 2006 IEEE.
Resumo:
Applying direct error counting, we compare the accuracy and evaluate the validity of different available numerical approaches to the estimation of the bit-error rate (BER) in 40-Gb/s return-to-zero differential phase-shift-keying transmission. As a particular example, we consider a system with in-line semiconductor optical amplifiers. We demonstrate that none of the existing models has an absolute superiority over the others. We also reveal the impact of the duty cycle on the accuracy of the BER estimates through the differently introduced Q-factors. © 2007 IEEE.
Resumo:
We present the impact of frequency offsetting of strong (e.g. 35 GHz) optical filters on the performance of 42.7 Gb/s 50% RZ-DPSK systems. The performance is evaluated when offsetting the filter by substantial amounts and it is found that with an offset of almost half the bit rate there is a significant improvement in the calculated 'Q' (> 1 dB). We deployed balanced, constructive single ended and destructive single ended detection, so that we could investigate the physical origins of the penalty reduction of asymmetric filtering of 42.7 Gb/s 50% RZ-DPSK system.
Resumo:
Through modelling of direct error computation, a reduction of pattern- dependent errors in a standard fiber-based transmission link at 40 Gb/s rate is demonstrated by application of a skewed data pre-encoding. The trade-off between the bit-error rate improvement and the data rate loss is examined.
Resumo:
We experimentally investigate a long-distance, high-bit-rate transmission system which combines optical-phase-conjugation with quasi-lossless amplification. Comparison with a conventional system configuration demonstrates the possibility of obtaining both dispersion compensation and improved nonlinear tolerance using proposed scheme.
Resumo:
We demonstrate successful 3-mode-division-multiplexed × 192-Gb/s dual-polarization 8QAM (total 576 Gb/s) transmission over 480 km of few-mode fiber (FMF). This distance was obtained using an all few-mode re-circulating loop containing a 60 km FMF span. © 2013 IEEE.
Resumo:
We analyze the performance through numerical simulations of a new modulation format: serial dark soliton (SDS) for wide-area 100-Gb/s applications. We compare the performance of the SDS with conventional dark soliton, amplitude-modulation phase-shift keying (also known as duobinary), nonreturn-to-zero, and return-to-zero modulation formats, when subjected to typical wide-area-network impairments. We show that the SDS has a strong chromatic dispersion and polarization-mode-dispersion tolerance, while maintaining a compact spectrum suitable for strong filtering requirement in ultradense wavelength-division-multiplexing applications. The SDS can be generated using commercially available components for 40-Gb/s applications and is cost efficient when compared with other 100-Gb/s electrical-time-division-multiplexing systems.
Resumo:
We experimentally compare the performance of standard single-mode fiber (SSMF) and UltraWave fiber (UWF) for ultra-long-haul (ULH) 40-Gb/s wavelength- division- multiplexing transmissions. We used the carrier-suppressed return-to-zero amplitude-shift-keying (CSRZ-ASK) and the carrier-suppressed return-to-zero differential-phase-shift-keying (CSRZ-DPSK) formats, which are particularly well-adapted to 40-Gb/s pulse-overlapped propagation. We demonstrate that transmission distance well beyond 2000 km can be reached on UWF with both the CSRZ-ASK and CSRZ-DPSK formats, or on SSMF with the CSRZ-DPSK format only, thus indicating that SSMF-based infrastructure of incumbent carriers can be upgraded at 40-Gb/s channel rates to ULH distances. © 2007 IEEE.