27 resultados para Library for Visual Image Analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis sets out to examine in detail the condition of systemic hypertension (high Blood Pressure) in relation to optometric practice in the United Kingdom. Systemic hypertension, which is asymptomatic in the early stages, is diagnosed from the Blood Pressure (BP) measurement recorded by a sphygmomanometer and/or from the complications that have developed in target organs. Optometric practice based surveys revealed that diagnosed systemic hypertension was the most prevalent cardiovascular medical condition (20.5%). Measurement of BP of patients in this sample revealed that if an optometrist included sphygmomanometry into the sight examination then at least one patient each day would be referred for suspect systemic hypertension. Optometric opinion felt that the measurement of BP in optometric practice would advance the profession, being appreciated by both patients and General Practitioners (GPs), but was felt to be an unnecessary routine procedure. The present sight examination for the systemic hypertensive is similar to that of the normotensive patient, but may involve an altered fundus examination and a visual field test. The GPs were in favour of optometric BP measurement and a future role in the share care management of the systemic hypertensive. The application of a new pictorial grading scale for the grading of vascular changes associated with pre-malignant systemic hypertension was found to be both accurate and reliable. Clinical trial of the grading scale in optometric practice found positive correlations between BP and increasing severity of the retinal vascular features. The subtle pre-malignant vascular changes require reliable accurate detection and analysis to assist in the management of the systemic hypertensive patient. Vessel width was shown to decrease with increasing age. Image analysis of the A/V ratio, arteriolar tortuosity and focal calibre changes revealed a positive correlation to the patient's BP (p<0.001). The retinal vasculature is relatively stable longitudinally with only minor changes in response to early disease states. Age and elevated BP increased a patient's risk of developing systemic medical conditions over a two-year period. The application of the pictorial grading scale to optometric practice and training the optometrist in the use of sphygmomanometry would improve the management of the systemic hypertensive patient in optometric practice. Future advances in image analysis hold substantial benefits for the detection and monitoring of subtle vascular changes associated with systemic hypertension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To study the density and cross-sectional area of axons in the optic nerve in elderly control subjects and in cases of Alzheimer's disease (AD) using an image analysis system. Methods: Sections of optic nerves from control and AD patients were stained with toluidine blue to reveal axon profiles. Results: The density of axons was reduced in both the center and peripheral portions of the optic nerve in AD compared with control patients. Analysis of axons with different cross-sectional areas suggested a specific loss of the smaller sized axons in AD, i.e., those with areas less that 1.99 μm2. An analysis of axons >11 μm2 in cross-sectional area suggested no specific loss of the larger axons in this group of patients. Conclusions: The data suggest that image analysis provides an accurate and reproducible method of quantifying axons in the optic nerve. In addition, the data suggest that axons are lost throughout the optic nerve with a specific loss of the smaller-sized axons. Loss of the smaller axons may explain the deficits in color vision observed in a significant proportion of patients with AD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuing advances in digital image capture and storage are resulting in a proliferation of imagery and associated problems of information overload in image domains. In this work we present a framework that supports image management using an interactive approach that captures and reuses task-based contextual information. Our framework models the relationship between images and domain tasks they support by monitoring the interactive manipulation and annotation of task-relevant imagery. During image analysis, interactions are captured and a task context is dynamically constructed so that human expertise, proficiency and knowledge can be leveraged to support other users in carrying out similar domain tasks using case-based reasoning techniques. In this article we present our framework for capturing task context and describe how we have implemented the framework as two image retrieval applications in the geo-spatial and medical domains. We present an evaluation that tests the efficiency of our algorithms for retrieving image context information and the effectiveness of the framework for carrying out goal-directed image tasks. © 2010 Springer Science+Business Media, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a new technique for extracting histological parameters from multi-spectral images of the ocular fundus. The new method uses a Monte Carlo simulation of the reflectance of the fundus to model how the spectral reflectance of the tissue varies with differing tissue histology. The model is parameterised by the concentrations of the five main absorbers found in the fundus: retinal haemoglobins, choroidal haemoglobins, choroidal melanin, RPE melanin and macular pigment. These parameters are shown to give rise to distinct variations in the tissue colouration. We use the results of the Monte Carlo simulations to construct an inverse model which maps tissue colouration onto the model parameters. This allows the concentration and distribution of the five main absorbers to be determined from suitable multi-spectral images. We propose the use of "image quotients" to allow this information to be extracted from uncalibrated image data. The filters used to acquire the images are selected to ensure a one-to-one mapping between model parameters and image quotients. To recover five model parameters uniquely, images must be acquired in six distinct spectral bands. Theoretical investigations suggest that retinal haemoglobins and macular pigment can be recovered with RMS errors of less than 10%. We present parametric maps showing the variation of these parameters across the posterior pole of the fundus. The results are in agreement with known tissue histology for normal healthy subjects. We also present an early result which suggests that, with further development, the technique could be used to successfully detect retinal haemorrhages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To compare graticule and image capture assessment of the lower tear film meniscus height (TMH). Methods: Lower tear film meniscus height measures were taken in the right eyes of 55 healthy subjects at two study visits separated by 6 months. Two images of the TMH were captured in each subject with a digital camera attached to a slit-lamp biomicroscope and stored in a computer for future analysis. Using the best of two images, the TMH was quantified by manually drawing a line across the tear meniscus profile, following which the TMH was measured in pixels and converted into millimetres, where one pixel corresponded to 0.0018 mm. Additionally, graticule measures were carried out by direct observation using a calibrated graticule inserted into the same slit-lamp eyepiece. The graticule was calibrated so that actual readings, in 0.03 mm increments, could be made with a 40× ocular. Results: Smaller values of TMH were found in this study compared to previous studies. TMH, as measured with the image capture technique (0.13 ± 0.04 mm), was significantly greater (by approximately 0.01 ± 0.05 mm, p = 0.03) than that measured with the graticule technique (0.12 ± 0.05 mm). No bias was found across the range sampled. Repeatability of the TMH measurements taken at two study visits showed that graticule measures were significantly different (0.02 ± 0.05 mm, p = 0.01) and highly correlated (r = 0.52, p < 0.0001), whereas image capture measures were similar (0.01 ± 0.03 mm, p = 0.16), and also highly correlated (r = 0.56, p < 0.0001). Conclusions: Although graticule and image analysis techniques showed similar mean values for TMH, the image capture technique was more repeatable than the graticule technique and this can be attributed to the higher measurement resolution of the image capture (i.e. 0.0018 mm) compared to the graticule technique (i.e. 0.03 mm). © 2006 British Contact Lens Association.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: To determine the theoretical and clinical minimum image pixel resolution and maximum compression appropriate for anterior eye image storage. Methods: Clinical images of the bulbar conjunctiva, palpebral conjunctiva, and corneal staining were taken at the maximum resolution of Nikon:CoolPix990 (2048 × 1360 pixels), DVC:1312C (1280 × 811), and JAI:CV-S3200 (767 × 569) single chip cameras and the JVC:KYF58 (767 × 569) three chip camera. The images were stored in TIFF format and further copies created with reduced resolution or compressed. The images were then ranked for clarity on a 15 inch monitor (resolution 1280 × 1024) by 20 optometrists and analysed by objective image analysis grading. Theoretical calculation of the resolution necessary to detect the smallest objects of clinical interest was also conducted. Results: Theoretical calculation suggested that the minimum resolution should be ≥579 horizontal pixels at 25 × magnification. Image quality was perceived subjectively as being reduced when the pixel resolution was lower than 767 × 569 (p<0.005) or the image was compressed as a BMP or <50% quality JPEG (p<0.005). Objective image analysis techniques were less susceptible to changes in image quality, particularly when using colour extraction techniques. Conclusion: It is appropriate to store anterior eye images at between 1280 × 811 and 767 × 569 pixel resolution and at up to 1:70 JPEG compression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: To examine the academic literature on the grading of corneal transparency and to assess the potential use of objective image analysis. Method: Reference databases of academic literature were searched and relevant manuscripts reviewed. Annunziato, Efron (Millennium Edition) and Vistakon-Synoptik corneal oedema grading scale images were analysed objectively for relative intensity, edges detected, variation in intensity and maximum intensity. In addition, corneal oedema was induced in one subject using a low oxygen transmissibility (Dk/t) hydrogel contact lens worn for 3 hours under a light eye patch. Recovery from oedema was monitored over time using ultrasound pachymetry, high and low contrast visual acuity measures, bulbar hyperaemia grading and transparency image analysis of the test and control eyes. Results: Several methods for assessing corneal transparency are described in the academic literature, but none have gained widespread in clinical practice. The change in objective image analysis with printed scale grade was best described by quadratic parametric or sigmoid 3-parameter functions. ‘Pupil image scales’ (Annunziato and Vistakon-Synoptik) were best correlated to average intensity; however, the corneal section scale (Efron) was strongly correlated to variations in intensity. As expected, patching an eye wearing a low Dk/t hydrogel contact lens caused a significant (F=119.2, P<0.001) 14.3% increase in corneal thickness, which gradually recovered under open eye conditions. Corneal section image analysis was the most affected parameter and intensity variation across the slit width, in isolation, was the strongest correlate, accounting for 85.8% of the variance with time following patching, and 88.7% of the variance with corneal thickness. Conclusion: Corneal oedema is best determined objectively by the intensity variation across the width of a corneal section. This can be easily measured using a slit-lamp camera connected to a computer. Oedema due to soft contact lens wear is not easily determined over the pupil area by sclerotic scatter illumination techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose - To generate a reflectance model of the fundus that allows an accurate non-invasive quantification of blood and pigments. Methods - A Monte Carlo simulation was used to produce a mathematical model of light interaction with the fundus at different wavelengths. The model predictions were compared with fundus images from normal volunteers in several spectral bands (peaks at 507, 525, 552, 585, 596 and 611nm). Th e model was then used to calculate the concentration and distribution of the known absorbing components of the fundus. Results - The shape of the statistical distribution of the image data generally corresponded to that of the model data; the model however appears to overestimate the reflectance of the fundus in the longer wavelength region.As the absorption by xanthophyll has no significant eff ect on light transport above 534nm, its distribution in the fundus was quantified: the wavelengths where both shape and distribution of image and model data matched (<553nm) were used to train a neural network which was then applied to every point in the image data. The xanthophyll distribution thus found was in agreement with published literature data in normal subjects. Conclusion - We have developed a method for optimising multi-spectral imaging of the fundus and a computer image analysis capable of estimating information about the structure and properties of the fundus. Th e technique successfully calculates the distribution of xanthophyll in the fundus of healthy volunteers. Further improvement of the model is required to allow the deduction of other parameters from images; investigations in known pathology models are also necessary to establish if this method is of clinical use in detecting early chroido-retinopathies, hence providing a useful screening and diagnostic tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In addition to being the chief cause of death in developed countries, systemic hypertension is also a leading cause of visual impairment. The eye is an end arteriolar system and is therefore susceptible to changes in blood pressure. It is also the only place where blood vessels can be clearly viewed by noninvasive techniques. This paper reviews current research into premalignant and malignant retinal signs of systemic hypertension. Previous methods of classifying retinal hypertensive signs are identified, along with more recent image analysis techniques. The need for observing the retinal vasculature as well as measuring blood pressure for monitoring systemic hypertensive patients is discussed in relation to current research. Copyright © 2002 by Current Science Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiovascular disease and stroke continue to be the chief causes of death in developed countries and one of the leading causes of visual impairment. The individual with systemic hypertension may remain asymptomatic for many years. Systemic mortality and morbidity are markedly higher for hypertensives than normotensives, but can be significantly reduced by early diagnosis and then efficient management. However, the ability of Optometrists to detect and appropriately refer systemic hypertensives remains generally poor. This review examines the disease, its effects and detection by observation of the retinal signs, particularly those considered to be pre-malignant. Previous methods of classifying retinal hypertensive signs are discussed along with more recent image analysis techniques. The role of the optometrist in detecting, monitoring and appropriate referral of systemic hypertensives is discussed in relation to current research. (C) 2001 The College of Optometrists. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Previous investigations have demonstrated a relative vascular autoregulatory inefficiency of the inferior compared to the superior retina in healthy subjects breathing increased CO2. The purpose of this study was to determine whether the superior and inferior visual field sensitivities of healthy eyes are similarly affected during mild hypercapnia. DESIGN: Experimental study. METHODS: Visual field analysis (Humphrey Field Analyser; SITA standard 24-2 program) was carried out on one randomly selected eye of 22 subjects (mean age, 27.7 ± 5 years) during normal room air breathing and isoxic hypercapnia. The Student paired t-tests were used to compare the visual field indices mean deviation (MD) and pattern standard deviation (PSD) for each breathing condition. A secondary, sectoral analysis of mean pointwise sensitivity was performed for each condition. In each case a P value of <.01 was considered statistically significant (Bonferroni corrected). RESULTS: Visual field MD was -0.23 ± 0.95dB during room air breathing and -0.49 ± 1.04dB during hypercapnia (P = .034). Sectoral pointwise mean sensitivity deteriorated by 0.46dB (P = .006) in the upper visual hemifield during hypercapnia, whereas no significant difference was observed for the lower hemifield (P = .331). CONCLUSIONS: The upper visual hemifield exhibited a significantly greater degree of deterioration in pointwise visual field mean sensitivity compared to the lower hemifield during hypercapnic conditions. This suggests that the upper visual hemifield and hence inferior retina is more susceptible to insult during hypercapnia than the superior retina in healthy individuals. A regional susceptibility of inferior retinal function to altered vascular or metabolic effects may account for the earlier and more frequent inferior nerve fibre damage associated with glaucomatous optic neuropathy. © 2003 by Elsevier Science Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To assess the validity and repeatability of objective compared to subjective contact lens fit analysis. Methods: Thirty-five subjects (aged 22.0. ±. 3.0 years) wore two different soft contact lens designs. Four lens fit variables: centration, horizontal lag, post-blink movement in up-gaze and push-up recovery speed were assessed subjectively (four observers) and objectively from slit-lamp biomicroscopy captured images and video. The analysis was repeated a week later. Results: The average of the four experienced observers was compared to objective measures, but centration, movement on blink, lag and push-up recovery speed all varied significantly between them (p <. 0.001). Horizontal lens centration was on average close to central as assessed both objectively and subjectively (p > 0.05). The 95% confidence interval of subjective repeatability was better than objective assessment (±0.128. mm versus ±0.168. mm, p = 0.417), but utilised only 78% of the objective range. Vertical centration assessed objectively showed a slight inferior decentration (0.371. ±. 0.381. mm) with good inter- and intrasession repeatability (p > 0.05). Movement-on-blink was lower estimated subjectively than measured objectively (0.269. ±. 0.179. mm versus 0.352. ±. 0.355. mm; p = 0.035), but had better repeatability (±0.124. mm versus ±0.314. mm 95% confidence interval) unless correcting for the smaller range (47%). Horizontal lag was lower estimated subjectively (0.562. ±. 0.259. mm) than measured objectively (0.708. ±. 0.374. mm, p <. 0.001), had poorer repeatability (±0.132. mm versus ±0.089. mm 95% confidence interval) and had a smaller range (63%). Subjective categorisation of push-up speed of recovery showed reasonable differentiation relative to objective measurement (p <. 0.001). Conclusions: The objective image analysis allows an accurate, reliable and repeatable assessment of soft contact lens fit characteristics, being a useful tool for research and optimisation of lens fit in clinical practice.