44 resultados para Lente intraocular multifocal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Editorial

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To compare distance and near visual performance with a zero-aberration aspheric intraocular lens (IOL) (Softec HD, Lenstec, Inc. FL, USA) with that of an otherwise identical, but spherical IOL (Softec 1). Setting: Department of Ophthalmology, Solihull Hospital, West Midlands, United Kingdom. Methods: This prospective study comprised 37 patients with a Softec 1 spherical IOL implanted in one eye, who underwent phacoemulsification and received the Softec HD aspheric IOL in the fellow eye. One month post-operatively, unaided distance and near vision, residual refraction, best spectacle corrected distance and near visual acuity, reading speed, pseudoaccommodation and photopic contrast sensitivity were recorded. Wavefront analysis enabled comparison of higher order aberrations between the IOLs. Results: Prior to surgery, the Softec 1 and Softec HD eyes were not significantly different. Post-operatively, unaided vision, best spectacle corrected visual acuity and residual refraction were not significantly different between the eyes, nor were there significant differences observed between the measured wavefront aberrations. Once implanted, the range of focus was significantly better in the Softec HD IOL eye than the Softec 1 IOL eye and, although reading speed was equivalent to the Softec 1 eye, the print size at which this could be achieved was significantly smaller. Conclusions: Depth of field was significantly improved with the aspheric IOL compared with the spherical IOL, without any compromise in distance visual performance between the two IOLs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. To compare visual function with the Bausch & Lomb PureVision multifocal contact lens to monovision with PureVision single vision contact lenses. Methods. Twenty presbyopic subjects were fitted with either the PureVision multifocal contact lens or monovision with PureVision singlevision lenses. Aftera 1-month trial, the following assessments of visual function were made: (a) distance, intermediate, and near visual acuity (VA); (b) reading ability; (c) distance and near contrast sensitivity function (CSF); (d) near range of clear vision; (e) stereoacuity; and (f) subjective evaluation of near vision ability with a standardized questionnaire. Subjects were then refitted with the alternative correction and the procedure was repeated. All measurements were compared between the two corrections, whereas the ``low addition'' multifocal lens was also compared with the ``high addition'' alternative. Results. Distance and near VA were significantly better with monovision than with the multifocal option (p < 0.05). Intermediate VA (p = 0.13) was similar with both corrections, whereas there was also no significant difference in distance and near CSF (p = 0.29 on both occasions). Reading speeds (p = 0.48) and the critical print size (p = 0.90) were not significantly different between the two contact lens corrections, but stereoacuity (p < 0.01) and the near range of clear vision (p < 0.05) were significantly better with the multifocal option than with monovision. Subjective assessment of near ability was similar for both types of contact lens (p = 0.52). The high addition multifocal lens produced significantly poorer distance and near CSF, near VA, and critical print size compared with the low addition alternative. Conclusions. Monovision performed better than a center-near aspheric simultaneous vision multifocal contact lens of the same material for distance and near VA only. The multifocal option provides better stereoacuity and near range of clear vision, with little differences in CSF, so a better balance of real-world visual function may be achieved due to minimal binocular disruption. (Optom Vis Sci 2009;86:98-105)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need to measure the response of the oculomotor system, such as ocular accommodation, accurately and in real-world environments is essential. New instruments have been developed over the past 50 years to measure eye focus including the extensively utilised and well validated Canon R-1, but in general these have had limitations such as a closed field-of-view, a poor temporal resolution and the need for extensive instrumentation bulk preventing naturalistic performance of environmental tasks. The use of photoretinoscopy and more specifically the PowerRefractor was examined in this regard due to its remote nature, binocular measurement of accommodation, eye movement and pupil size and its open field-of-view. The accuracy of the PowerRefractor to measure refractive error was on averaging similar, but more variable than subjective refraction and previously validated instrumentation. The PowerRefractor was found to be tolerant to eye movements away from the visual axis, but could not function with small pupil sizes in brighter illumination. The PowerRefractor underestimated the lead of accommodation and overestimated the slope of the accommodation stimulus response curve. The PowerRefractor and the SRW-5000 were used to measure the oculomotor responses in a variety of real-world environment: spectacles compared to single vision contract lenses; the use of multifocal contact lenses by pre-presbyopes (relevant to studies on myopia retardation); and ‘accommodating’ intraocular lenses. Due to the accuracy concerns with the PowerRefractor, a purpose-built photoretinoscope was designed to measure the oculomotor response to a monocular head-mounted display. In conclusion, this thesis has shown the ability of photoretinoscopy to quantify changes in the oculomotor system. However there are some major limitations to the PowerRefractor, such as the need for individual calibration for accurate measures of accommodation and vergence, and the relatively large pupil size necessary for measurement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis was concerned with investigating methods of improving the IOP pulse’s potential as a measure of clinical utility. There were three principal sections to the work. 1. Optimisation of measurement and analysis of the IOP pulse. A literature review, covering the years 1960 – 2002 and other relevant scientific publications, provided a knowledge base on the IOP pulse. Initial studies investigated suitable instrumentation and measurement techniques. Fourier transformation was identified as a promising method of analysing the IOP pulse and this technique was developed. 2. Investigation of ocular and systemic variables that affect IOP pulse measurements In order to recognise clinically important changes in IOP pulse measurement, studies were performed to identify influencing factors. Fourier analysis was tested against traditional parameters in order to assess its ability to detect differences in IOP pulse. In addition, it had been speculated that the waveform components of the IOP pulse contained vascular characteristic analogous to those components found in arterial pulse waves. Validation studies to test this hypothesis were attempted. 3. The nature of the intraocular pressure pulse in health and disease and its relation to systemic cardiovascular variables. Fourier analysis and traditional parameters were applied to the IOP pulse measurements taken on diseased and healthy eyes. Only the derived parameter, pulsatile ocular blood flow (POBF) detected differences in diseased groups. The use of an ocular pressure-volume relationship may have improved the POBF measure’s variance in comparison to the measurement of the pulse’s amplitude or Fourier components. Finally, the importance of the driving force of pulsatile blood flow, the arterial pressure pulse, is highlighted. A method of combining the measurements of pulsatile blood flow and pulsatile blood pressure to create a measure of ocular vascular impedance is described along with its advantages for future studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intraocular light scatter is high in certain subject groups eg the elderly, due to increased optical media turbidity, which scatters and attenuates light travelling towards the retina. This causes reduced retinal contrast especially in the presence of glare light. Such subjects have depressed Contrast Sensitivity Functions (CSF). Currently available clinical tests do not effectively reflect this visual disability. Intraocular light scatter may be quantified by measuring the CSF with and without glare light and calculating Light Scatter Factors (LSF). To record the CSF on clinically available equipment (Nicolet CS2000), several psychophysical measurement techniques were investigated, and the 60 sec Method of Increasing Contrast was selected as the most appropriate. It was hypothesised that intraocular light scatter due to particles of different dimensions could be identified by glare sources at wide (30°) and narrow (3.5°) angles. CSFs andLSFs were determined for: (i) Subjects in young, intermediate and old age groups. (ii) Subjects during recovery from large amounts of induced corneal oedema. (iii) A clinical sample of contact lens (CL) wearers with a group of matched controls. The CSF was attenuated at all measured spatial frequencies with the intermediate and old group compared to the young group. High LSF values were found only in the old group (over 60 years). It was concluded that CSF attenuation in the intermediate group was due to reduced pupil size, media absorption and/or neural factors. In the old group, the additional factor was high intraocular light scatter levels of lenticular origin. The rate of reduction of the LSF for the 3.5° glare angle was steeper than that for the 30° angle, following induced corneal oedema. This supported the hypothesis, as it was anticipated that epithelial oedema would recover more rapidly than stromal oedema. CSFs and LSFs were markedly abnormal in the CL wearers. The analytical details and the value of these investigative techniques in contact lens research are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis was to develop standards of best practice for the subjective assessment of near visual function in presbyopia. Near visual acuity (VA) is a quick and simple measure but an assessment of the maximum reading speed and the smallest print size that can maintain this are equally important, to gain a better reflection of real world visual function. These metrics are dependent on the amplitude of accommodation (AoA) and often this must be evaluated using subjective techniques. Defocus curves are less susceptible than the push-up/push-down test to the influence of blur tolerance but their implementation must be standardised such that letter sequences and the order of lens presentation are randomised, to avoid memory effects, whilst the AoA should be quantified as the range of defocus for which only the best VA is maintained. In addition to such clinical assessments, subjective questionnaire evaluations are also important, to determine whether at least an individual’s needs are met. The Near Activity Visual Questionnaire (NAVQ) developed in this thesis can be used for this. Using these standardised near vision metrics it is shown that visual performance with monovision and multifocal contact lenses is comparable whilst initial outcomes of single optic ‘accommodating’ intraocular lens implantation are unlikely to be sustained in the long-term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between accommodation and intraocular pressure (lOP) has not been addressed as a research question for over 20 years, when measurement of both of these parameters was less advanced than today. Hence the central aim of this thesis was to evaluate the effects of accommodation on lOP. The instrument of choice throughout this thesis was the Pulsair EasyEye non-contact tonometer (NCT) due principally to its slim-line design which allowed the measurement of lOP in one eye and simultaneous stimulation of accommodation in the other eye. A second reason for using the Pulsair EasyEye NCT was that through collaboration with the manufacturers (Keeler, UK) the instrument's operational technology was made accessible. Hence, the principle components underpinning non-contact lOP measures of 0.1mmHg resolution (an order of magnitude greater than other methods) were made available. The relationship between the pressure-output and corneal response has been termed the pressure-response relationship, aspects of which have been shown to be related to ocular biometric parameters. Further, analysis of the components of the pressure-response relationship together with high-speed photography of the cornea during tonometry has enhanced our understanding of the derivation of an lOP measure with the Pulsair EasyEye NCT. The NCT samples the corneal response to the pressure pulse over a 19 ms cycle photoelectronically, but computes the subject's lOP using the data collected in the first 2.34 ms. The relatively instantaneous nature of the lOP measurement renders the measures susceptible to variations in the steady-state lOP caused by the respiratory and cardiac cycles. As such, the variance associated with these cycles was minimised by synchronising the lOP measures with the cardiac trace and maintaining a constant pace respiratory cycle at 15 breathes/minute. It is apparent that synchronising the lOP measures with the peak, middle or trough of the cardiac trace significantly reduced the spread of consecutive measures. Of the 3 locations investigated, synchronisation with the middle location demonstrated the least variance (coeflicient of variation = 9.1%) and a strong correlation (r = 0.90, p = <0.001) with lOP values obtained with Goldmann contact tonometry (n = 50). Accordingly lOP measures synchronised with the middle location of the cardiac cycle were taken in the RE while the LE fixated low (L; zero D), intermediate (I; 1.50 D) and high (H; 4 D) accommodation targets, Quasi-continuous measures of accommodation responses were obtained during the lOP measurement period using the portable infrared Grand Seiko FR-5000 autorefractor. The lOP reduced between L and I accommodative levels by approximately 0.61 mmHg (p <0.00 I). No significant reduction in IOP between L and H accommodation levels was elicited (p = 0.65) (n = 40). The relationship between accommodation and lOP was characterised by substantial inter-subject variations. Myopes demonstrated a tendency to show a reduction in IOP with accommodation which was significant only with I accommodation levels when measured with the NCT (r = 0.50, p = 0.01). However, the relationship between myopia and lOP change with accommodation reached significance for both I (r = 0.61, p= 0.003) and H (r = 0.531, p= 0.0 1) accommodation levels when measured with the Ocular blood Flow Analyser (OBFA). Investigation of the effects of accommodation on the parameters measured by the OBFA demonstrated that with H accommodation levels the pulse amplitude (PA) and pulse rate (PR) responses differed between myopes and emmetropes (PA: p = 0.03; PR: p = 0.004). As thc axial length increased there was a tendency for the pulsatile ocular blood flow (POBF) to reduce with accommodation, which was significant only with H accommodation levels (r = 0.38, p = 0.02). It is proposed that emmetropes arc able to regulate the POBF responses to changes in ocular perfusion pressure caused by changes in lOP with I (r = 0.77, p <0.001) and H (r = 0.73, p = 0.001) accommodation levels. However, thc relationship between lOP and POBF changes in the myopes was not correlated for both I (r = 0.33, p = 0.20) and H (r = 0.05, p = 0.85) accommodation levels. The thesis presents new data on the relationships between accommodation, lOP and parameters of the OBFA,: and provides evidence for possible lOP and choroidal blood flow regulatory mechanisms. Further the data highlight possible deficits in the vascular regulation of the myopic eye during accommodation, which may play a putative role in the aetiology of myopia development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To assess the stability of the Akreos AO intraocular lens (IOL) platform with a simulated toric design using objective image analysis. Setting: Six hospital eye clinics across Europe. Methods: After implantation in 1 eye of patients, IOLs with orientation marks were imaged at 1 to 2 days, 7 to 14 days, 30 to 60 days, and 120 to 180 days. The axis of rotation and IOL centration were objectively assessed using validated image analysis. Results: The study enrolled 107 patients with a mean age of 69.9 years ± 7.7 (SD). The image quality was sufficient for IOL rotation analysis in 91% of eyes. The mean rotation between the first day postoperatively and 120 to 180 days was 1.93 ± 2.33 degrees, with 96% of IOLs rotating fewer than 5 degrees and 99% rotating fewer than 10 degrees. There was no significant rotation between visits and no clear bias in the direction of rotation. In 71% of eyes, the dilation and image quality was sufficient for image analysis of centration. The mean change in centration between 1 day and 120 to 180 days was 0.21 ± 0.11 mm, with all IOLs decentering less than 0.5 mm. There was no significant decentration between visits and no clear bias in the direction of the decentration. Conclusion: Objective analysis of digital retroillumination images taken at different postoperative periods shows the aspheric IOL platform was stable in the eye and is therefore suitable for the application of a toric surface to correct corneal astigmatism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To analyse the relationship between measured intraocular pressure (IOP) and central corneal thickness (CCT), corneal hysteresis (CH) and corneal resistance factor (CRF) in ocular hypertension (OHT), primary open-angle (POAG) and normal tension glaucoma (NTG) eyes using multiple tonometry devices. Methods: Right eyes of patients diagnosed with OHT (n=47), normal tension glaucoma (n=17) and POAG (n=50) were assessed, IOP was measured in random order with four devices: Goldmann applanation tonometry (GAT); Pascal(R) dynamic contour tonometer (DCT); Reichert(R) ocular response analyser (ORA); and Tono-Pen(R) XL. CCT was then measured using a hand-held ultrasonic pachymeter. CH and CRF were derived from the air pressure to corneal reflectance relationship of the ORA data. Results: Compared to the GAT, the Tonopen and ORA Goldmann equivalent (IOPg) and corneal compensated (IOPcc) measured higher IOP readings (F=19.351, p<0.001), particularly in NTG (F=12.604, p<0.001). DCT was closest to Goldmann IOP and had the lowest variance. CCT was significantly different (F=8.305, p<0.001) between the 3 conditions as was CH (F=6.854, p=0.002) and CRF (F=19.653, p<0.001). IOPcc measures were not affected by CCT. The DCT was generally not affected by corneal biomechanical factors. Conclusion: This study suggests that as the true pressure of the eye cannot be determined non-invasively, measurements from any tonometer should be interpreted with care, particularly when alterations in the corneal tissue are suspected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. To examine the influence of positional misalignments on intraocular pressure (IOP) measurement with a rebound tonometer. Methods. Using the iCare rebound tonometer, IOP readings were taken from the right eye of 36 healthy subjects at the central corneal apex (CC) and compared to IOP measures using the Goldmann applanation tonometer (GAT). Using a bespoke rig, iCare IOP readings were also taken 2 mm laterally from CC, both nasally and temporally, along with angular deviations of 5 and 10 degrees, both nasally and temporally to the visual axis. Results. Mean IOP ± SD, as measured by GAT, was 14.7±2.5 mmHg versus iCare tonometer readings of 17.4±3.6 mmHg at CC, representing an iCare IOP overestimation of 2.7±2.8 mmHg (P<0.001), which increased at higher average IOPs. IOP at CC using the iCare tonometer was not significantly different to values at lateral displacements. IOP was marginally underestimated with angular deviation of the probe but only reaching significance at 10 degrees nasally. Conclusions. As shown previously, the iCare tonometer overestimates IOP compared to GAT. However, IOP measurement in normal, healthy subjects using the iCare rebound tonometer appears insensitive to misalignments. An IOP underestimation of <1 mmHg with the probe deviated 10 degrees nasally reached statistical but not clinical significance levels. © 2013 Ian G. Beasley et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual field assessment is a core component of glaucoma diagnosis and monitoring, and the Standard Automated Perimetry (SAP) test is considered up until this moment, the gold standard of visual field assessment. Although SAP is a subjective assessment and has many pitfalls, it is being constantly used in the diagnosis of visual field loss in glaucoma. Multifocal visual evoked potential (mfVEP) is a newly introduced method used for visual field assessment objectively. Several analysis protocols have been tested to identify early visual field losses in glaucoma patients using the mfVEP technique, some were successful in detection of field defects, which were comparable to the standard SAP visual field assessment, and others were not very informative and needed more adjustment and research work. In this study, we implemented a novel analysis approach and evaluated its validity and whether it could be used effectively for early detection of visual field defects in glaucoma. OBJECTIVES: The purpose of this study is to examine the effectiveness of a new analysis method in the Multi-Focal Visual Evoked Potential (mfVEP) when it is used for the objective assessment of the visual field in glaucoma patients, compared to the gold standard technique. METHODS: 3 groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes) and glaucoma suspect patients (38 eyes). All subjects had a two standard Humphrey visual field HFA test 24-2 and a single mfVEP test undertaken in one session. Analysis of the mfVEP results was done using the new analysis protocol; the Hemifield Sector Analysis HSA protocol. Analysis of the HFA was done using the standard grading system. RESULTS: Analysis of mfVEP results showed that there was a statistically significant difference between the 3 groups in the mean signal to noise ratio SNR (ANOVA p<0.001 with a 95% CI). The difference between superior and inferior hemispheres in all subjects were all statistically significant in the glaucoma patient group 11/11 sectors (t-test p<0.001), partially significant 5/11 (t-test p<0.01) and no statistical difference between most sectors in normal group (only 1/11 was significant) (t-test p<0.9). sensitivity and specificity of the HAS protocol in detecting glaucoma was 97% and 86% respectively, while for glaucoma suspect were 89% and 79%. DISCUSSION: The results showed that the new analysis protocol was able to confirm already existing field defects detected by standard HFA, was able to differentiate between the 3 study groups with a clear distinction between normal and patients with suspected glaucoma; however the distinction between normal and glaucoma patients was especially clear and significant. CONCLUSION: The new HSA protocol used in the mfVEP testing can be used to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patient. Using this protocol can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. Sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucoma field loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The purpose of this study was to examine the effectiveness of a new analysis method of mfVEP objective perimetry in the early detection of glaucomatous visual field defects compared to the gold standard technique. Methods and patients: Three groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes), and glaucoma suspect patients (38 eyes). All subjects underwent two standard 24-2 visual field tests: one with the Humphrey Field Analyzer and a single mfVEP test in one session. Analysis of the mfVEP results was carried out using the new analysis protocol: the hemifield sector analysis protocol. Results: Analysis of the mfVEP showed that the signal to noise ratio (SNR) difference between superior and inferior hemifields was statistically significant between the three groups (analysis of variance, P<0.001 with a 95% confidence interval, 2.82, 2.89 for normal group; 2.25, 2.29 for glaucoma suspect group; 1.67, 1.73 for glaucoma group). The difference between superior and inferior hemifield sectors and hemi-rings was statistically significant in 11/11 pair of sectors and hemi-rings in the glaucoma patients group (t-test P<0.001), statistically significant in 5/11 pairs of sectors and hemi-rings in the glaucoma suspect group (t-test P<0.01), and only 1/11 pair was statistically significant (t-test P<0.9). The sensitivity and specificity of the hemifield sector analysis protocol in detecting glaucoma was 97% and 86% respectively and 89% and 79% in glaucoma suspects. These results showed that the new analysis protocol was able to confirm existing visual field defects detected by standard perimetry, was able to differentiate between the three study groups with a clear distinction between normal patients and those with suspected glaucoma, and was able to detect early visual field changes not detected by standard perimetry. In addition, the distinction between normal and glaucoma patients was especially clear and significant using this analysis. Conclusion: The new hemifield sector analysis protocol used in mfVEP testing can be used to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patients. Using this protocol, it can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. The sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucomatous visual field loss. The intersector analysis protocol can detect early field changes not detected by the standard Humphrey Field Analyzer test. © 2013 Mousa et al, publisher and licensee Dove Medical Press Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tear film, cornea and lens dictate the refractive power of the eye and the retinal image quality is principally defined by diffraction, whole eye wavefront error, scatter, and chromatic aberration. Diffraction and wave aberration are fundamentally pupil diameter dependent; however scatter can be induced by refractive surgery and in the normal ageing eye becomes an increasingly important factor defining retinal image quality. The component of visual quality most affected by the tear film, refractive surgery and multifocal contact and intraocular lenses is the wave aberration of the eye. This body of work demonstrates the effects of each of these anomalies on the visual quality of the eye. When assessing normal or borderline self-diagnosed dry eye subjects using aberrometry, combining lubricating eye drops and spray does not offer any benefit over individual products. However, subjects perceive a difference in comfort for all interventions after one hour. Total higher order aberrations increase after laser assisted sub-epithelial keratectomy performed using a solid-state laser on myopes, but this causes no significant decrease in contrast sensitivity or increase in glare disability. Mean sensitivity and reliability indices for perimetry were comparable to pre-surgery results. Multifocal contact lenses and intraocular lenses are designed to maximise vision when the patient is binocular, so any evaluation of the eyes individually is confounded by reduced individual visual acuity and visual quality. Different designs of aspheric multifocal contact lenses do not provide the same level of visual quality. Multifocal contact lenses adversely affect mean deviation values for perimetry and this should be considered when screening individuals with multifocal contact or intraocular lenses. Photographic image quality obtained through a multifocal contact or intraocular lens appears to be unchanged. Future work should evaluate the effect of these anomalies in combination; with the aim of providing the best visual quality possible and supplying normative data for screening purposes.