30 resultados para Lattice-gas-model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell-wall components (cellulose, hemicellulose (oat spelt xylan), lignin (Organosolv)), and model compounds (levoglucosan (an intermediate product of cellulose decomposition) and chlorogenic acid (structurally similar to lignin polymer units)) have been investigated to probe in detail the influence of potassium on their pyrolysis behaviours as well as their uncatalysed decomposition reaction. Cellulose and lignin were pretreated to remove salts and metals by hydrochloric acid, and this dematerialized sample was impregnated with 1% of potassium as potassium acetate. Levoglucosan, xylan and chlorogenic acid were mixed with CHCOOK to introduce 1% K. Characterisation was performed using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). In addition to the TGA pyrolysis, pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS) analysis was introduced to examine reaction products. Potassium-catalysed pyrolysis has a huge influence on the char formation stage and increases the char yields considerably (from 7.7% for raw cellulose to 27.7% for potassium impregnated cellulose; from 5.7% for raw levoglucosan to 20.8% for levoglucosan with CHCOOK added). Major changes in the pyrolytic decomposition pathways were observed for cellulose, levoglucosan and chlorogenic acid. The results for cellulose and levoglucosan are consistent with a base catalysed route in the presence of the potassium salt which promotes complete decomposition of glucosidic units by a heterolytic mechanism and favours its direct depolymerization and fragmentation to low molecular weight components (e.g. acetic acid, formic acid, glyoxal, hydroxyacetaldehyde and acetol). Base catalysed polymerization reactions increase the char yield. Potassium-catalysed lignin pyrolysis is very significant: the temperature of maximum conversion in pyrolysis shifts to lower temperature by 70 K and catalysed polymerization reactions increase the char yield from 37% to 51%. A similar trend is observed for the model compound, chlorogenic acid. The addition of potassium does not produce a dramatic change in the tar product distribution, although its addition to chlorogenic acid promoted the generation of cyclohexane and phenol derivatives. Postulated thermal decomposition schemes for chlorogenic acid are presented. © 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We address the collective dynamics of a soliton train propagating in a medium described by the nonlinear Schrödinger equation. Our approach uses the reduction of train dynamics to the discrete complex Toda chain (CTC) model for the evolution of parameters for each train constituent: such a simplification allows one to carry out an approximate analysis of the dynamics of positions and phases of individual interacting pulses. Here, we employ the CTC model to the problem which has relevance to the field of fibre optics communications where each binary digit of transmitted information is encoded via the phase difference between the two adjacent solitons. Our goal is to elucidate different scenarios of the train distortions and the subsequent information garbling caused solely by the intersoliton interactions. First, we examine how the structure of a given phase pattern affects the initial stage of the train dynamics and explain the general mechanisms for the appearance of unstable collective soliton modes. Then we further discuss the nonlinear regime concentrating on the dependence of the Lax scattering matrix on the input phase distribution; this allows one to classify typical features of the train evolution and determine the distance where the soliton escapes from its slot. In both cases, we demonstrate deep mathematical analogies with the classical theory of crystal lattice dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the strong coupling (SC) limit of the anisotropic Kardar-Parisi-Zhang (KPZ) model. A systematic mapping of the continuum model to its lattice equivalent shows that in the SC limit, anisotropic perturbations destroy all spatial correlations but retain a temporal scaling which shows a remarkable crossover along one of the two spatial directions, the choice of direction depending on the relative strength of anisotropicity. The results agree with exact numerics and are expected to settle the long-standing SC problem of a KPZ model in the infinite range limit. © 2007 The American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study re-examines the one-dimensional equilibrium model of Gibilaro and Rowe (1974) for a segregating gas fluidized bed. The model was based on volumetric jetsam concentration and divided the bed contents into bulk and wake phases, taking account of bulk and wake flux, segregation, exchange between the bulk and wake phases, and axial mixing. Due to the complex nature of the model and its unstable solution, the lack of computing power at the time prevented the authors from doing little more than the analytical solutions to specific cases of this model. This paper provides a numerical total solution and allows the effect of the respective parameters to be compared for the first time. There is also a comparison with experimental results, which showed a reasonable agreement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents the first part of a CFD study on the performance of a downer reactor for biomass pyrolysis. The reactor was equipped with a novel gas-solid separation method, developed by the co-authors from the ICFAR (Canada). The separator, which was designed to allow for fast separation of clean pyrolysis gas, consisted of a cone deflector and a gas exit pipe installed inside the downer reactor. A multi-fluid model (Eulerian-Eulerian) with constitutive relations adopted from the kinetic theory of granular flow was used to simulate the multiphase flow. The effects of the various parameters including operation conditions, separator geometry and particle properties on the overall hydrodynamics and separation efficiency were investigated. The model prediction of the separator efficiency was compared with experimental measurements. The results revealed distinct hydrodynamic features around the cone separator, allowing for up to 100% separation efficiency. The developed model provided a platform for the second part of the study, where the biomass pyrolysis is simulated and the product quality as a function of operating conditions is analyzed. Crown Copyright © 2014 Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The existing method of pipeline monitoring, which requires an entire pipeline to be inspected periodically, wastes time and is expensive. A risk-based model that reduces the amount of time spent on inspection has been developed. This model not only reduces the cost of maintaining petroleum pipelines, but also suggests an efficient design and operation philosophy, construction method and logical insurance plans.The risk-based model uses analytic hierarchy process, a multiple attribute decision-making technique, to identify factors that influence failure on specific segments and analyze their effects by determining the probabilities of risk factors. The severity of failure is determined through consequence analysis, which establishes the effect of a failure in terms of cost caused by each risk factor and determines the cumulative effect of failure through probability analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report an investigation into the high-frequency conductivity of optically excited charge carriers far from equilibrium with the lattice. The investigated samples consist of hydrogenated nanocrystalline silicon films grown on a thin film of silicon oxide on top of a silicon substrate. For the investigation, we used an optical femtosecond pump-probe setup to measure the reflectance change of a probe beam. The pump beam ranged between 580 and 820nm, whereas the probe wavelength spanned 770 to 810nm. The pump fluence was fixed at 0.6mJ/cm2. We show that at a fixed delay time of 300fs, the conductivity of the excited electron-hole plasma is described well by a classical conductivity model of a hot charge carrier gas found at Maxwell-Boltzmann distribution, while Fermi-Dirac statics is not suitable. This is corroborated by values retrieved from pump-probe reflectance measurements of the conductivity and its dependence on the excitation wavelength and carrier temperature. The conductivity decreases monotonically as a function of the excitation wavelength, as expected for a nondegenerate charge carrier gas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents a computational fluid dynamic (CFD) study of Dimethyl Ether steam reforming (DME-SR) in a large scale Circulating Fluidized Bed (CFB) reactor. The CFD model is based on Eulerian-Eulerian dispersed flow and solved using commercial software (ANSYS FLUENT). The DME-SR reactions scheme and kinetics in the presence of a bifunctional catalyst of CuO/ZnO/Al2O3+ZSM-5 were incorporated in the model using in-house developed user-defined function. The model was validated by comparing the predictions with experimental data from the literature. The results revealed for the first time detailed CFB reactor hydrodynamics, gas residence time, temperature distribution and product gas composition at a selected operating condition of 300 °C and steam to DME mass ratio of 3 (molar ratio of 7.62). The spatial variation in the gas species concentrations suggests the existence of three distinct reaction zones but limited temperature variations. The DME conversion and hydrogen yield were found to be 87% and 59% respectively, resulting in a product gas consisting of 72 mol% hydrogen. In part II of this study, the model presented here will be used to optimize the reactor design and study the effect of operating conditions on the reactor performance and products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of friction and interparticle cohesion forces on the gas-solid flow hydrodynamics was discussed. A proposed interparticle cohesion and frictional force terms have been tested in a continuum fully developed flow model to investigate their effect on the general hydrodynamic features of vertical duct flow. It was observed that both terms have direct effect on lowering the material carryover, which implies a reduced bed expansion in freely bubbling column. The parametric analysis shows that cohesion and frictional forces are high when compared to kinetic stress and hence it can play a major role in describing the hydrodynamics features of the flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Eulerian-Eulerian CFD model was used to investigate the fast pyrolysis of biomass in a downer reactor equipped with a novel gas-solid separation mechanism. The highly endothermic pyrolysis reaction was assumed to be entirely driven by an inert solid heat carrier (sand). A one-step global pyrolysis reaction, along with the equations describing the biomass drying and heat transfer, was implemented in the hydrodynamic model presented in part I of this study (Fuel Processing Technology, V126, 366-382). The predictions of the gas-solid separation efficiency, temperature distribution, residence time and the pyrolysis product yield are presented and discussed. For the operating conditions considered, the devolatilisation efficiency was found to be above 60% and the yield composition in mass fraction was 56.85% bio-oil, 37.87% bio-char and 5.28% non-condensable gas (NCG). This has been found to agree reasonably well with recent relevant published experimental data. The novel gas-solid separation mechanism allowed achieving greater than 99.9% separation efficiency and < 2 s pyrolysis gas residence time. The model has been found to be robust and fast in terms of computational time, thus has the great potential to aid in future design and optimisation of the biomass fast pyrolysis process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human Resource (HR) systems and practices generally referred to as High Performance Work Practices (HPWPs), (Huselid, 1995) (sometimes termed High Commitment Work Practices or High Involvement Work Practices) have attracted much research attention in past decades. Although many conceptualizations of the construct have been proposed, there is general agreement that HPWPs encompass a bundle or set of HR practices including sophisticated staffing, intensive training and development, incentive-based compensation, performance management, initiatives aimed at increasing employee participation and involvement, job safety and security, and work design (e.g. Pfeffer, 1998). It is argued that these practices either directly and indirectly influence the extent to which employees’ knowledge, skills, abilities, and other characteristics are utilized in the organization. Research spanning nearly 20 years has provided considerable empirical evidence for relationships between HPWPs and various measures of performance including increased productivity, improved customer service, and reduced turnover (e.g. Guthrie, 2001; Belt & Giles, 2009). With the exception of a few papers (e.g., Laursen &Foss, 2003), this literature appears to lack focus on how HPWPs influence or foster more innovative-related attitudes and behaviours, extra role behaviors, and performance. This situation exists despite the vast evidence demonstrating the importance of innovation, proactivity, and creativity in its various forms to individual, group, and organizational performance outcomes. Several pertinent issues arise when considering HPWPs and their relationship to innovation and performance outcomes. At a broad level is the issue of which HPWPs are related to which innovation-related variables. Another issue not well identified in research relates to employees’ perceptions of HPWPs: does an employee actually perceive the HPWP –outcomes relationship? No matter how well HPWPs are designed, if they are not perceived and experienced by employees to be effective or worthwhile then their likely success in achieving positive outcomes is limited. At another level, research needs to consider the mechanisms through which HPWPs influence –innovation and performance. The research question here relates to what possible mediating variables are important to the success or failure of HPWPs in impacting innovative behaviours and attitudes and what are the potential process considerations? These questions call for theory refinement and the development of more comprehensive models of the HPWP-innovation/performance relationship that include intermediate linkages and boundary conditions (Ferris, Hochwarter, Buckley, Harrell-Cook, & Frink, 1999). While there are many calls for this type of research to be made a high priority, to date, researchers have made few inroads into answering these questions. This symposium brings together researchers from Australia, Europe, Asia and Africa to examine these various questions relating to the HPWP-innovation-performance relationship. Each paper discusses a HPWP and potential variables that can facilitate or hinder the effects of these practices on innovation- and performance- related outcomes. The first paper by Johnston and Becker explores the HPWPs in relation to work design in a disaster response organization that shifts quickly from business as usual to rapid response. The researchers examine how the enactment of the organizational response is devolved to groups and individuals. Moreover, they assess motivational characteristics that exist in dual work designs (normal operations and periods of disaster activation) and the implications for innovation. The second paper by Jørgensen reports the results of an investigation into training and development practices and innovative work behaviors (IWBs) in Danish organizations. Research on how to design and implement training and development initiatives to support IWBs and innovation in general is surprisingly scant and often vague. This research investigates the mechanisms by which training and development initiatives influence employee behaviors associated with innovation, and provides insights into how training and development can be used effectively by firms to attract and retain valuable human capital in knowledge-intensive firms. The next two papers in this symposium consider the role of employee perceptions of HPWPs and their relationships to innovation-related variables and performance. First, Bish and Newton examine perceptions of the characteristics and awareness of occupational health and safety (OHS) practices and their relationship to individual level adaptability and proactivity in an Australian public service organization. The authors explore the role of perceived supportive and visionary leadership and its impact on the OHS policy-adaptability/proactivity relationship. The study highlights the positive main effects of awareness and characteristics of OHS polices, and supportive and visionary leadership on individual adaptability and proactivity. It also highlights the important moderating effects of leadership in the OHS policy-adaptability/proactivity relationship. Okhawere and Davis present a conceptual model developed for a Nigerian study in the safety-critical oil and gas industry that takes a multi-level approach to the HPWP-safety relationship. Adopting a social exchange perspective, they propose that at the organizational level, organizational climate for safety mediates the relationship between enacted HPWS’s and organizational safety performance (prescribed and extra role performance). At the individual level, the experience of HPWP impacts on individual behaviors and attitudes in organizations, here operationalized as safety knowledge, skills and motivation, and these influence individual safety performance. However these latter relationships are moderated by organizational climate for safety. A positive organizational climate for safety strengthens the relationship between individual safety behaviors and attitudes and individual-level safety performance, therefore suggesting a cross-level boundary condition. The model includes both safety performance (behaviors) and organizational level safety outcomes, operationalized as accidents, injuries, and fatalities. The final paper of this symposium by Zhang and Liu explores leader development and relationship between transformational leadership and employee creativity and innovation in China. The authors further develop a model that incorporates the effects of extrinsic motivation (pay for performance: PFP) and employee collectivism in the leader-employee creativity relationship. The papers’ contributions include the incorporation of a PFP effect on creativity as moderator, rather than predictor in most studies; the exploration of the PFP effect from both fairness and strength perspectives; the advancement of knowledge on the impact of collectivism on the leader- employee creativity link. Last, this is the first study to examine three-way interactional effects among leader-member exchange (LMX), PFP and collectivism, thus, enriches our understanding of promoting employee creativity. In conclusion, this symposium draws upon the findings of four empirical studies and one conceptual study to provide an insight into understanding how different variables facilitate or potentially hinder the influence various HPWPs on innovation and performance. We will propose a number of questions for further consideration and discussion. The symposium will address the Conference Theme of ‘Capitalism in Question' by highlighting how HPWPs can promote financial health and performance of organizations while maintaining a high level of regard and respect for employees and organizational stakeholders. Furthermore, the focus on different countries and cultures explores the overall research question in relation to different modes or stages of development of capitalism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel simulation model for pyrolysis processes oflignocellulosicbiomassin AspenPlus (R) was presented at the BC&E 2013. Based on kinetic reaction mechanisms, the simulation calculates product compositions and yields depending on reactor conditions (temperature, residence time, flue gas flow rate) and feedstock composition (biochemical composition, atomic composition, ash and alkali metal content). The simulation model was found to show good correlation with existing publications. In order to further verify the model, own pyrolysis experiments in a 1 kg/h continuously fed fluidized bed fast pyrolysis reactor are performed. Two types of biomass with different characteristics are processed in order to evaluate the influence of the feedstock composition on the yields of the pyrolysis products and their composition. One wood and one straw-like feedstock are used due to their different characteristics. Furthermore, the temperature response of yields and product compositions is evaluated by varying the reactor temperature between 450 and 550 degrees C for one of the feedstocks. The yields of the pyrolysis products (gas, oil, char) are determined and their detailed composition is analysed. The experimental runs are reproduced with the corresponding reactor conditions in the AspenPlus model and the results compared with the experimental findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the dynamical properties of the RZ-DPSK encoded sequences, focusing on the instabilities in the soliton train leading to the distortions of the information transmitted. The problem is reformulated within the framework of complex Toda chain model which allows one to carry out the simplified description of the optical soliton dynamics. We elucidate how the bit composition of the pattern affects the initial (linear) stage of the train dynamics and explain the general mechanisms of the appearance of unstable collective soliton modes. Then we discuss the nonlinear regime using asymptotic properties of the pulse stream at large propagation distances and analyze the dynamical behavior of the train classifying different scenarios for the pattern instabilities. Both approaches are based on the machinery of Hermitian and non-Hermitian lattice analysis. © 2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel route to prepare highly active and stable N2O decomposition catalysts is presented, based on Fe-exchanged beta zeolite. The procedure consists of liquid phase Fe(III) exchange at low pH. By varying the pH systematically from 3.5 to 0, using nitric acid during each Fe(III)-exchange procedure, the degree of dealumination was controlled, verified by ICP and NMR. Dealumination changes the presence of neighbouring octahedral Al sites of the Fe sites, improving the performance for this reaction. The so-obtained catalysts exhibit a remarkable enhancement in activity, for an optimal pH of 1. Further optimization by increasing the Fe content is possible. The optimal formulation showed good conversion levels, comparable to a benchmark Fe-ferrierite catalyst. The catalyst stability under tail gas conditions containing NO, O2 and H2O was excellent, without any appreciable activity decay during 70 h time on stream. Based on characterisation and data analysis from ICP, single pulse excitation NMR, MQ MAS NMR, N2 physisorption, TPR(H2) analysis and apparent activation energies, the improved catalytic performance is attributed to an increased concentration of active sites. Temperature programmed reduction experiments reveal significant changes in the Fe(III) reducibility pattern with the presence of two reduction peaks; tentatively attributed to the interaction of the Fe-oxo species with electron withdrawing extraframework AlO6 species, causing a delayed reduction. A low-temperature peak is attributed to Fe-species exchanged on zeolitic AlO4 sites, which are partially charged by the presence of the neighbouring extraframework AlO6 sites. Improved mass transport phenomena due to acid leaching is ruled out. The increased activity is rationalized by an active site model, whose concentration increases by selectively washing out the distorted extraframework AlO6 species under acidic (optimal) conditions, liberating active Fe species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents a computational parametric analysis of DME steam reforming in a large scale Circulating Fluidized Bed (CFB) reactor. The Computational Fluid Dynamic (CFD) model used, which is based on Eulerian-Eulerian dispersed flow, has been developed and validated in Part I of this study [1]. The effect of the reactor inlet configuration, gas residence time, inlet temperature and steam to DME ratio on the overall reactor performance and products have all been investigated. The results have shown that the use of double sided solid feeding system remarkable improvement in the flow uniformity, but with limited effect on the reactions and products. The temperature has been found to play a dominant role in increasing the DME conversion and the hydrogen yield. According to the parametric analysis, it is recommended to run the CFB reactor at around 300 °C inlet temperature, 5.5 steam to DME molar ratio, 4 s gas residence time and 37,104 ml gcat -1 h-1 space velocity. At these conditions, the DME conversion and hydrogen molar concentration in the product gas were both found to be around 80%.