39 resultados para Laser biomodulation effects


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the rate equations describing the operation of the Er3+, Pr3+ -codoped ZBLAN fiber lasers with different pump configurations, theoretical calculations that relate to the population characteristics and optimization of CW operation of high power Er3+, Pr3+ :ZBLAN double-clad fiber lasers are presented. Using the measured ET (energy-transfer), ETU (energy-transfer-upconversion) and CR (cross-relaxation) parameters relevant to Er3+, Pr3+ -codoped ZBLAN, a good agreement between the theoretical results from the model and recently reported experimental measurements is obtained. The effects on the slope efficiency of a number of laser parameters including fiber length, reflectance of the output mirror and pumping configuration are quantitatively analyzed and used for the design and optimization of high power Er3+, Pr3+ -codoped ZBLAN fiber lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)1-(x+y), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Qmax = 28 Å-1) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and PO bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials. © 2013 The Owner Societies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tear film, cornea and lens dictate the refractive power of the eye and the retinal image quality is principally defined by diffraction, whole eye wavefront error, scatter, and chromatic aberration. Diffraction and wave aberration are fundamentally pupil diameter dependent; however scatter can be induced by refractive surgery and in the normal ageing eye becomes an increasingly important factor defining retinal image quality. The component of visual quality most affected by the tear film, refractive surgery and multifocal contact and intraocular lenses is the wave aberration of the eye. This body of work demonstrates the effects of each of these anomalies on the visual quality of the eye. When assessing normal or borderline self-diagnosed dry eye subjects using aberrometry, combining lubricating eye drops and spray does not offer any benefit over individual products. However, subjects perceive a difference in comfort for all interventions after one hour. Total higher order aberrations increase after laser assisted sub-epithelial keratectomy performed using a solid-state laser on myopes, but this causes no significant decrease in contrast sensitivity or increase in glare disability. Mean sensitivity and reliability indices for perimetry were comparable to pre-surgery results. Multifocal contact lenses and intraocular lenses are designed to maximise vision when the patient is binocular, so any evaluation of the eyes individually is confounded by reduced individual visual acuity and visual quality. Different designs of aspheric multifocal contact lenses do not provide the same level of visual quality. Multifocal contact lenses adversely affect mean deviation values for perimetry and this should be considered when screening individuals with multifocal contact or intraocular lenses. Photographic image quality obtained through a multifocal contact or intraocular lens appears to be unchanged. Future work should evaluate the effect of these anomalies in combination; with the aim of providing the best visual quality possible and supplying normative data for screening purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A femtosecond laser has been used to asymmetrically modify the cladding of fiber containing long-period gratings. Following modification, devices in single-mode fiber are shown to be capable of sensing the magnitude and direction of bending in one plane by producing blue and red wavelength shifts depending upon the orientation of the bend. The resulting curvature sensitivities were -1.62 and +3.82 nm·m. Devices have also been produced using an elliptical core fiber to study the effects of the cladding modification on the two polarization eigenstates. A cladding modification applied on the fast axis of the fiber is shown to affect the light in the fast axis much more significantly than the light in the orthogonal state; this behavior may ultimately lead to a sensor capable of detecting the direction of bending in two dimensions for applications in shape sensing. © 2006 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report observations of the diffraction pattern resulting when a nematic liquid crystal is illuminated with two equal power, high intensity beams of light from an Ar+ laser. The time evolution of the pattern is followed from the initial production of higher diffraction orders to a final striking display arising as a result of the self-diffraction of the two incident beams. The experimental results are described with good approximation by a model assuming a phase distribution at the output plane of the liquid crystal in the form of the sum of a gaussian and a sinusoid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential for nonlinear optical processes in nematic-liquid-crystal cells is great due to the large phase changes resulting from reorientation of the nematic-liquid-crystal director. Here the combination of diffraction and self-diffraction effects are studied simultaneously by the use of a pair of focused laser beams which are coincident on a homeotropically aligned liquid-crystal cell. The result is a complicated diffraction pattern in the far field. This is analyzed in terms of the continuum theory for liquid crystals, using a one-elastic-constant approximation to solve the reorientation profile. Very good comparison between theory and experiment is obtained. An interesting transient grating, existing due to the viscosity of the liquid-crystal material, is observed in theory and practice for large cell-tilt angles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra-short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro-machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron-ion or electron-hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser-plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self-focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio-temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed. ©2006 American Institute of Physics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports the Rayleigh scattering effects in ultra-long Raman fibre laser. It has been found that in a long fibre cavity (-100 km) the distributed feedback due to Rayleigh back scattering at propagation of light between fibre Bragg grating reflectors may be comparable with the lumped feedback provided by the FBG itself. As a result, Raman lasing in the fibre span limited by lumped (FBG) reflector at one side only appears possible due to significant reflection from the RS-based "random" distributed mirror at the other side. Thus, it concludes that a distributed Rayleigh scattering "random" mirror can form a cavity together with a single FBG spliced to the opposite cavity end.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the rate equations describing the operation of the Er3+, Pr3+ -codoped ZBLAN fiber lasers with different pump configurations, theoretical calculations that relate to the population characteristics and optimization of CW operation of high power Er3+, Pr3+ :ZBLAN double-clad fiber lasers are presented. Using the measured ET (energy-transfer), ETU (energy-transfer-upconversion) and CR (cross-relaxation) parameters relevant to Er3+, Pr3+ -codoped ZBLAN, a good agreement between the theoretical results from the model and recently reported experimental measurements is obtained. The effects on the slope efficiency of a number of laser parameters including fiber length, reflectance of the output mirror and pumping configuration are quantitatively analyzed and used for the design and optimization of high power Er3+, Pr3+ -codoped ZBLAN fiber lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lensing effects in diode end-pumped Yb:YAG laser rods and discs are studied. Two mechanisms of refractive-index changes are taken into account, thermal and electronic (due to the difference between the excited- and ground-state Yb polarisabilities), as well as pump-induced deformation of the laser crystal. Under pulsed pumping, the electronic lensing effect prevails over the thermal one in both rods and discs. In rods pumped by a highly focused cw beam, the dioptric power of the electronic lens exceeds that of the thermal lens, whereas in discs steady-state lensing is predominantly due to the thermal mechanism. © 2009 Kvantovaya Elektronika and Turpion Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Step-index polymer optical fiber Bragg gratings (POFBGs) and microstructured polymer optical fiber Bragg gratings (mPOFBGs) present several attractive features, especially for sensing purposes. In comparison to FBGs written in silica fibers, they are more sensitive to temperature and pressure because of the larger thermo-optic coefficient and smaller Young's modulus of polymer materials. (M)POFBGs are most often photowritten in poly(methylmethacrylate) (PMMA) materials using a continuous-wave 325 nm HeCd laser. For the first time to the best of our knowledge, we study photoinduced birefringence effects in (m)POFBGs. To achieve this, highly reflective gratings were inscribed with the phase mask technique. They were then monitored in transmission with polarized light. For this, (m)POF sections a few cm in length containing the gratings were glued to angled silica fibers. Polarization dependent loss (PDL) and differential group delay (DGD) were computed from the Jones matrix eigenanalysis using an optical vector analyser. Maximum values exceeding several dB and a few picoseconds were obtained for the PDL and DGD, respectively. The response to lateral force was finally investigated. As it induces birefringence in addition to the photo-induced one, an increase of the PDL and DGD values were noticed. © 2014 Copyright SPIE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitride materials and coatings have attracted extensive research interests for various applications in advanced nuclear reactors due to their unique combination of physical properties, including high temperature stability, excellent corrosion resistance, superior mechanical property and good thermal conductivity. In this paper, the ion irradiation effects in nanocrystalline TiN coatings as a function of grain size are reported. TiN thin films (thickness of 100 nm) with various grain sizes (8-100 nm) were prepared on Si substrates by a pulsed laser deposition technique. All the samples were irradiated with He ions to high fluences at room temperature. Transmission electron microscopy (TEM) and high resolution TEM on the ion-irradiated samples show that damage accumulation in the TiN films reduces as the grain size reduces. Electrical resistivity of the ion-irradiated films increases slightly compared with the as-deposited ones. These observations demonstrate a good radiation-tolerance property of nanocrystalline TiN films. © 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of near infrared, high intensity femtosecond laser pulses for the inscription of long period fiber gratings in photonic crystal fiber is reported. The formation of grating structures in photonic crystal fiber is complicated by the fiber structure that allows wave-guidance but that impairs and scatters the femtosecond inscription beam. The effects of symmetric and asymmetric femtosecond laser inscriptions are compared and the polarization characteristics of long period gratings and their responses to external perturbations are reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra‐short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro‐machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron‐ion or electron‐hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser‐plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self‐focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio‐temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present femtosecond laser inscribed phase masks for the inscription of Bragg gratings in optical fibres. The principal advantage is the flexibility afforded by the femtosecond laser inscription, where sub-surface structures define the phase mask period and mask properties. The masks are used to produce fibre Bragg gratings having different orders according to the phase mask period. The work demonstrates the incredible flexibility of femtosecond lasers for the rapid prototyping of complex and reproducible mask structures. We also consider three-beam interference effects, a consequence of the zeroth-order component present in addition to higher-order diffraction components. © 2012 SPIE.