42 resultados para LONG-DISTANCE MIGRATION


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Among the different possible amplification solutions offered by Raman scattering in optical fibers, ultra-long Raman lasers are particularly promising as they can provide quasi-losless second order amplification with reduced complexity, displaying excellent potential in the design of low-noise long-distance communication systems. Still, some of their advantages can be partially offset by the transfer of relative intensity noise from the pump sources and cavity-generated Stokes to the transmitted signal. In this paper we study the effect of ultra-long cavity design (length, pumping, grating reflectivity) on the transfer of RIN to the signal, demonstrating how the impact of noise can be greatly reduced by carefully choosing appropriate cavity parameters depending on the intended application of the system. © 2010 Copyright SPIE - The International Society for Optical Engineering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dispersion managed solitons have been discovered to have some remarkable properties which indicate an outstanding opportunity for exploitation in transmission systems. This paper will review and interpret these discoveries and discuss the potential for WDM of these solitons for both long distance systems and for the upgrade of the installed fibre base.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: This study aimed to explore methods of assessing interactions between neuronal sources using MEG beamformers. However, beamformer methodology is based on the assumption of no linear long-term source interdependencies [VanVeen BD, vanDrongelen W, Yuchtman M, Suzuki A. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 1997;44:867-80; Robinson SE, Vrba J. Functional neuroimaging by synthetic aperture magnetometry (SAM). In: Recent advances in Biomagnetism. Sendai: Tohoku University Press; 1999. p. 302-5]. Although such long-term correlations are not efficient and should not be anticipated in a healthy brain [Friston KJ. The labile brain. I. Neuronal transients and nonlinear coupling. Philos Trans R Soc Lond B Biol Sci 2000;355:215-36], transient correlations seem to underlie functional cortical coordination [Singer W. Neuronal synchrony: a versatile code for the definition of relations? Neuron 1999;49-65; Rodriguez E, George N, Lachaux J, Martinerie J, Renault B, Varela F. Perception's shadow: long-distance synchronization of human brain activity. Nature 1999;397:430-3; Bressler SL, Kelso J. Cortical coordination dynamics and cognition. Trends Cogn Sci 2001;5:26-36]. Methods: Two periodic sources were simulated and the effects of transient source correlation on the spatial and temporal performance of the MEG beamformer were examined. Subsequently, the interdependencies of the reconstructed sources were investigated using coherence and phase synchronization analysis based on Mutual Information. Finally, two interacting nonlinear systems served as neuronal sources and their phase interdependencies were studied under realistic measurement conditions. Results: Both the spatial and the temporal beamformer source reconstructions were accurate as long as the transient source correlation did not exceed 30-40 percent of the duration of beamformer analysis. In addition, the interdependencies of periodic sources were preserved by the beamformer and phase synchronization of interacting nonlinear sources could be detected. Conclusions: MEG beamformer methods in conjunction with analysis of source interdependencies could provide accurate spatial and temporal descriptions of interactions between linear and nonlinear neuronal sources. Significance: The proposed methods can be used for the study of interactions between neuronal sources. © 2005 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Error free transmission of a single polarisation optical time division multiplexed 40 Gbit/s dispersion managed pulse data stream over 1009 km has been achieved in a dispersion compensated standard (non-dispersion shifted) fibre. This distance is twice the previous record at this data rate, and was acheived through techniques developed for dispersion managed soliton transmission.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied the dynamics and stability of solitonic pulses (including soliton interaction) across URFL transmission links, as well as the dependence of these dynamics on cavity design (length, symmetry, reflectivity) and input pulse characteristics. The first experimental demonstration of long-distance ldquotruerdquo soliton propagation through optical fibre. The results conclude that even relatively long links of the order of 50 km show excellent nonlinear resilience and are capable of providing virtually transparent transmission under a broad range of input pulse characteristics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We experimentally investigate a long-distance, high-bit-rate transmission system which combines optical-phase-conjugation with quasi-lossless amplification. Comparison with a conventional system configuration demonstrates the possibility of obtaining both dispersion compensation and improved nonlinear tolerance using proposed scheme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A major focus of stem cell research is the generation of neurons that may then be implanted to treat neurodegenerative diseases. However, a picture is emerging where astrocytes are partners to neurons in sustaining and modulating brain function. We therefore investigated the functional properties of NT2 derived astrocytes and neurons using electrophysiological and calcium imaging approaches. NT2 neurons (NT2Ns) expressed sodium dependent action potentials, as well as responses to depolarisation and the neurotransmitter glutamate. NT2Ns exhibited spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling. Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, NT2 astrocytes (NT2As) exhibited morphology and functional properties consistent with this glial cell type. NT2As responded to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. NT2As also generated propagating calcium waves that were gap junction and purinergic signalling dependent. Our results show that NT2 derived astrocytes exhibit appropriate functionality and that NT2N networks interact with NT2A networks in co-culture. These findings underline the utility of such cultures to investigate human brain cell type signalling under controlled conditions. Furthermore, since stem cell derived neuron function and survival is of great importance therapeutically, our findings suggest that the presence of complementary astrocytes may be valuable in supporting stem cell derived neuronal networks. Indeed, this also supports the intriguing possibility of selective therapeutic replacement of astrocytes in diseases where these cells are either lost or lose functionality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Future high capacity optical links will have to make use of frequent signal regeneration to enable long distance transmission. In this respect, the role of all-optical signal processing becomes increasingly important because of its potential to mitigate signal impairments at low cost and power consumption. More substantial benefits are expected if regeneration is achieved simultaneously on a multiple signal band. Until recently, this had been achieved only for on-off keying modulation formats. However, as in future transmission links the information will be encoded also in the phase for enhancing the spectral efficiency, novel subsystem concepts will be needed for multichannel processing of such advanced signal formats. In this paper we show that phase sensitive amplifiers can be an ideal technology platform for developing such regenerators and we discuss our recent demonstration of the first multi-channel regenerator for phase encoded signals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We experimentally investigate a long-distance, high-bit-rate transmission system which combines optical-phase-conjugation with quasi-lossless amplification. Comparison with a conventional system configuration demonstrates the possibility of obtaining both dispersion compensation and improved nonlinear tolerance using proposed scheme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The world is connected by a core network of long-haul optical communication systems that link countries and continents, enabling long-distance phone calls, data-center communications, and the Internet. The demands on information rates have been constantly driven up by applications such as online gaming, high-definition video, and cloud computing. All over the world, end-user connection speeds are being increased by replacing conventional digital subscriber line (DSL) and asymmetric DSL (ADSL) with fiber to the home. Clearly, the capacity of the core network must also increase proportionally. © 1991-2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A key technology for future long-distance, high-capacity terrestrial optical communication links, distributed Raman amplification can increase system performance and expand the range of operating wavelengths.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simplified (without phase modulator) scheme of a black box optical regenerator is proposed, where an appropriate nonlinear propagation is used to enhance regeneration. Applying semi-theoretical models the authors optimise and demonstrate feasibility of error-free long distance transmission at 40 Gbit/s.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the dynamics of a growing crystalline facet where the growth mechanism is controlled by the geometry of the local curvature. A continuum model, in (2+1) dimensions, is developed in analogy with the Kardar-Parisi-Zhang (KPZ) model is considered for the purpose. Following standard coarse graining procedures, it is shown that in the large time, long distance limit, the continuum model predicts a curvature independent KPZ phase, thereby suppressing all explicit effects of curvature and local pinning in the system, in the "perturbative" limit. A direct numerical integration of this growth equation, in 1+1 dimensions, supports this observation below a critical parametric range, above which generic instabilities, in the form of isolated pillared structures lead to deviations from standard scaling behaviour. Possibilities of controlling this instability by introducing statistically "irrelevant" (in the sense of renormalisation groups) higher ordered nonlinearities have also been discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Future high capacity optical links will have to make use of frequent signal regeneration to enable long distance transmission. In this respect, the role of all-optical signal processing becomes increasingly important because of its potential to mitigate signal impairments at low cost and power consumption. More substantial benefits are expected if regeneration is achieved simultaneously on a multiple signal band. Until recently, this had been achieved only for on-off keying modulation formats. However, as in future transmission links the information will be encoded also in the phase for enhancing the spectral efficiency, novel subsystem concepts will be needed for multichannel processing of such advanced signal formats. In this paper we show that phase sensitive amplifiers can be an ideal technology platform for developing such regenerators and we discuss our recent demonstration of the first multi-channel regenerator for phase encoded signals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is currently great scientific and medical interest in the potential of tissue grown from stem cells. These cells present opportunities for generating model systems for drug screening and toxicological testing which would be expected to be more relevant to human outcomes than animal based tissue preparations. Newly realised astrocytic roles in the brain have fundamental implications within the context of stem cell derived neuronal networks. If the aim of stem cell neuroscience is to generate functional neuronal networks that behave as networks do in the brain, then it becomes clear that we must include and understand all the cellular components that comprise that network, and which are important to support synaptic integrity and cell to cell signalling. We have shown that stem cell derived neurons exhibit spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling (1). Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, astrocytes exhibit morphology and functional properties consistent with this glial cell type. Astrocytes also respond to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. Astroctyes also generate propagating calcium waves that are gap junction and purinergic signalling dependent. Our results show that stem cell derived astrocytes exhibit appropriate functionality and that stem cell neuronal networks interact with astrocytic networks in co-culture. Using mixed cultures of stem cell derived neurons and astrocytes, we have also shown both cell types also modulate their glucose uptake, glycogen turnover and lactate production in response to glutamate as well as increased neuronal activity (2). This finding is consistent with their neuron-astrocyte metabolic coupling thus demonstrating a tractable human model, which will facilitate the study of the metabolic coupling between neurons and astrocytes and its relationship with CNS functional issues ranging from plasticity to neurodegeneration. Indeed, cultures treated with oligomers of amyloid beta 1-42 (Aβ1-42) also display a clear hypometabolism, particularly with regard to utilization of substrates such as glucose (3). Both co-cultures of neurons and astrocytes and purified cultures of astrocytes showed a significant decrease in glucose uptake after treatment with 2 and 0.2 μmol/L Aβ at all time points investigated (p <0.01). In addition, a significant increase in the glycogen content of cells was also measured. Mixed neuron and astrocyte co-cultures as well as pure astrocyte cultures showed an initial decrease in glycogen levels at 6 hours compared with control at 0.2 μmol/L and 2 μmol/L P <0.01. These changes were accompanied by changes in NAD+/NADH (P<0.05), ATP (P<0.05), and glutathione levels (P<0.05), suggesting a disruption in the energy-redox axis within these cultures. The high energy demands associated with neuronal functions such as memory formation and protection from oxidative stress put these cells at particular risk from Aβ-induced hypometabolism. As numerous cell types interact in the brain it is important that any in vitro model developed reflects this arrangement. Our findings indicate that stem cell derived neuron and astrocyte networks can communicate, and so have the potential to interact in a tripartite manner as is seen in vivo. This study therefore lays the foundation for further development of stem cell derived neurons and astrocytes into therapeutic cell replacement and human toxicology/disease models. More recently our data provides evidence for a detrimental effect of Aβ on carbohydrate metabolism in both neurons and astrocytes. As a purely in vitro system, human stem cell models can be readily manipulated and maintained in culture for a period of months without the use of animals. In our laboratory cultures can be maintained in culture for up to 12 months months thus providing the opportunity to study the consequences of these changes over extended periods of time relevant to aspects of the disease progression time frame in vivo. In addition, their human origin provides a more realistic in vitro model as well as informing other human in vitro models such as patient-derived iPSC.