21 resultados para LCA, life cycle assessment, LCC, life cycle cost
Resumo:
Menorrhagia, or heavy menstrual bleeding (HMB), is a common gynaecological condition. As the aim of treatment is to improve women's wellbeing and quality of life (QoL), it is necessary to have effective ways to measure this. This study investigated the reliability and validity of the menorrhagia multi-attribute scale (MMAS), a menorrhagia-specific QoL instrument. Participants (n = 431) completed the MMAS and a battery of other tests as part of the baseline assessment of the ECLIPSE (Effectiveness and Cost-effectiveness of Levonorgestrel-containing Intrauterine system in Primary care against Standard trEatment for menorrhagia) trial. Analyses of their responses suggest that the MMAS has good measurement properties and is therefore an appropriate condition-specific instrument to measure the outcome of treatment for HMB. © 2011 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2011 RCOG.
Resumo:
Greenhouse gas emissions from fertiliser production are set to increase before stabilising due to the increasing demand to secure sustainable food supplies for a growing global population. However, avoiding the impacts of climate change requires all sectors to decarbonise by a very high level within several decades. Economically viable carbon reductions of substituting natural gas reforming with biomass gasification for ammonia production are assessed using techno-economic and life cycle assessment. Greenhouse gas savings of 65% are achieved for the biomass gasification system and the internal rate of return is 9.8% at base-line biomass feedstock and ammonia prices. Uncertainties in the assumptions have been tested by performing sensitivity analysis, which show, for example with a ±50% change in feedstock price, the rate of return ranges between -0.1% and 18%. It would achieve its target rate of return of 20% at a carbon price of £32/t CO, making it cost competitive compared to using biomass for heat or electricity. However, the ability to remain competitive to investors will depend on the volatility of ammonia prices, whereby a significant decrease would require high carbon prices to compensate. Moreover, since no such project has been constructed previously, there is high technology risk associated with capital investment. With limited incentives for industrial intensive energy users to reduce their greenhouse gas emissions, a sensible policy mechanism could target the support of commercial demonstration plants to help ensure this risk barrier is resolved. © 2013 The Authors.
Resumo:
Greenhouse gas emissions from fertiliser production are set to increase before stabilising due to the increasing demand to secure sustainable food supplies for a growing global population. However, avoiding the impacts of climate change requires all sectors to decarbonise by a very high level within several decades. Economically viable carbon reductions of substituting natural gas reforming with biomass gasification for ammonia production are assessed using techno-economic and life cycle assessment. Greenhouse gas savings of 65% are achieved for the biomass gasification system and the internal rate of return is 9.8% at base-line biomass feedstock and ammonia prices. Uncertainties in the assumptions have been tested by performing sensitivity analysis, which show, for example with a ±50% change in feedstock price, the rate of return ranges between -0.1% and 18%. It would achieve its target rate of return of 20% at a carbon price of £32/t CO, making it cost competitive compared to using biomass for heat or electricity. However, the ability to remain competitive to investors will depend on the volatility of ammonia prices, whereby a significant decrease would require high carbon prices to compensate. Moreover, since no such project has been constructed previously, there is high technology risk associated with capital investment. With limited incentives for industrial intensive energy users to reduce their greenhouse gas emissions, a sensible policy mechanism could target the support of commercial demonstration plants to help ensure this risk barrier is resolved. © 2013 The Authors.
Resumo:
Purpose ‐ This study provides empirical evidence for the contextuality of marketing performance assessment (MPA) systems. It aims to introduce a taxonomical classification of MPA profiles based on the relative emphasis placed on different dimensions of marketing performance in different companies and business contexts. Design/methodology/approach ‐ The data used in this study (n=1,157) were collected using a web-based questionnaire, targeted to top managers in Finnish companies. Two multivariate data analysis techniques were used to address the research questions. First, dimensions of marketing performance underlying the current MPA systems were identified through factor analysis. Second, a taxonomy of different profiles of marketing performance measurement was created by clustering respondents based on the relative emphasis placed on the dimensions and characterizing them vis-á-vis contextual factors. Findings ‐ The study identifies nine broad dimensions of marketing performance that underlie the MPA systems in use and five MPA profiles typical of companies of varying sizes in varying industries, market life cycle stages, and competitive positions associated with varying levels of market orientation and business performance. The findings support the previously conceptual notion of contextuality in MPA and provide empirical evidence for the factors that affect MPA systems in practice. Originality/value ‐ The paper presents the first field study of current MPA systems focusing on combinations of metrics in use. The findings of the study provide empirical support for the contextuality of MPA and form a classification of existing contextual systems suitable for benchmarking purposes. Limited evidence for performance differences between MPA profiles is also provided.
Resumo:
This paper presents research from part of a larger project focusing on the potential development of commercial opportunities for the reuse of batteries on the electricity grid system, subsequent to their primary use in low and ultra-low carbon vehicles, and investigating the life cycle issues surrounding the batteries. The work has three main areas; examination of electric vehicle fleet data in detail to investigate usage in first life. Batteries that have passed through a battery recycler at the end of their first life have been tested within the laboratory to confirm the general assumption that remaining capacity of 80% after use in transportation is a reasonable assumption as a basis for second-life applications. The third aspect of the paper is an investigation of the equivalent usage for three different second-life applications based on connection to the electricity grid. Additionally, the paper estimates the time to cell failure of the batteries within their second-life application to estimate lifespan for use within commercial investigations. © 2014 IEEE.
Resumo:
Pharmaceutical scientists who bulk freeze dry need to foremost identify what quality factors are of a priority during cycle development since the economics of freeze-drying do not allow for both the cost-efficient production and the ability to obtain the highest quality score across all quality factors. Consider; morphology, activity, dissolution, long-term storage, packaging and cost.