26 resultados para LC Resonant Circuit
Resumo:
A recently predicted resonant effect for the enhancement of two-wave mixing in photorefractive materials is investigated. The resonance occurs when the frequency of the applied ac field agrees with the eigenfrequency of the excited space-charge wave. Experimentally a clear resonance is found, as predicted by the theory, for high dc electric fields, but the resonance is smeared out for lower fields. A modified theory, taking into account the second temporal harmonic of the space-charge wave, shows good agreement with the experimental results.
Resumo:
Mixing phenomena observed when the flow rate in a single loop of the primary circuit is changed can influence the operation of pressurized water reactor (PWR) by inducing local gradients of boron concentration or coolant temperature. Analysis of one-dimensional Laser Doppler Anemometry (LDA) measurements during the start-up and shutdown of pump on a single loop of the ROCOM test facility has been performed. The effect of a step change and a ramped change in the flow rate on the axial and azimuthal velocities was examined. Numerical simulations were also performed for the step change in the flow rate that gave quantitative agreement with the axial velocities. Phenomenological agreement was made on the turbulent kinetic energy; however, observed values were a factor of 2.5 less than the turbulent kinetic energy derived from the measurements. © 2007.
Resumo:
A novel time-division-multiplexed Bragg grating interrogation system is presented, utilising a semiconductor optical amplifier within a resonating cavity. Without fast electronics, closely spaced low reflectivity gratings are interrogated with high signal power and low noise.
Resumo:
A single-stage, three-phase AC-to-DC converter topology is proposed for high-frequency power supply applications. The principal features of the circuit include continuous current operation of the three AC input inductors, inherent shaping of the input currents, resulting in high power factor, a transformer isolated output, and only two active devices are required, both soft-switched. Resonant conversion techniques are used, and a high power factor is achieved by injecting high-frequency currents into the three-phase rectifier, producing a high frequency modulation of the rectifier input voltages. The current injection principle is explained and the system operation is confirmed by a combination of simulation and experimental results.
Resumo:
Phagocytic cells produce a variety of oxidants as part of the immune defence, which react readily both with proteins and lipids, and could contribute to the oxidation of low density lipoprotein in atherosclerosis. We have investigated the oxidation of phospholipid vesicles by isolated human polymorphonuclear and mononuclear leukocytes, to provide a model of lipid oxidation in the absence of competing protein. PMA-stimulated cells were incubated with phospholipid vesicles contammg dipalmitoyl phosphatidylcholine (DPPC), palmitoyl-arachidonoyl phosphatidylcholine (PAPC), and stearoyl-oleoyl phosphatidylcholine (SOPC), before extraction of the lipids for analysis by HPLC coupled to electrospray mass spectrometry. In this system, oxidized phosphatidylcholines elute earlier than the native lipids owing to their decreased hydrophobicity, and can be identified according to their molecular mass. The formation of monohydroperoxides of P APC was observed routinely, together with low levels of hydroxides, but no chlorohydrin derivatives of P APC or SOPC were detected. However, the major oxidized product occurred at 828 m/z, and was identified as I-palmitoyl-2-(5,6-epoxyisoprostane E2)-sn-glycero-3-phosphocholine. These results show that phagocytes triggered by PMA cause oxidative damage to lipids predominantly by free radical mechanisms, and that electrophilic addition involving HOCl is not a major mechanism of attack. The contribution of myeloperoxidase and metal ions to the oxidation process is currently being investigated, and preliminary data suggest that myeloperoxidase-derived oxidants are responsible for the epoxyisoprostane phospholipid formation. The identification of an epoxyisoprostane phospholipid as the major product following phagocyte-induced phospholipid oxidation is novel and has implications for phagocyte involvement in atherogenesis.
Resumo:
The first resonant-cavity time-division-multiplexed (TDM) fiber Bragg grating sensor interrogation system is reported. This novel design uses a pulsed semiconductor optical amplifier in a cyclic manner to function as the optical source, amplifier, and modulator. Compatible with a range of standard wavelength detection techniques, this optically gated TDM system allows interrogation of low reflectivity "commodity" sensors spaced just 2 m apart, using a single active component. Results demonstrate an exceptional optical signal-to-noise ratio of 36 dB, a peak signal power of over +7 dBm, and no measurable crosstalk between sensors. Temperature tuning shows that the system is fully stable with a highly linear response. © 2004 IEEE.
Resumo:
Focusing on former-Soviet Greeks' experiences of cross-border movement to Greece, this paper sheds light on the impact of this migration on the social identities of Russian Greeks as a transnational community. It draws on informants’ narratives and ethnographic observations recorded among Greek migrants in their home communities in southern Russia, and shows how their motivation, in their transnational movement, is determined by the ‘push-and-pull’ forces of socio-economic and political transformations in post-Soviet space. In these conditions, Greek identity becomes a resource which facilitates the organisation of transnational migration. The cultural, social and economic differences between the former-Soviet Greek migrants and the native-born population of Greece result in the emergence of a Pontic-Greek cultural identity which emphasises migrants’ connections with the former USSR. The difficulties of economic and cultural adaptation for migrants to Greece are examined in relation to the Russian Greeks' economic strategies within their home communities and their perception of the ‘homeland’ as a constantly contested and relocated social construct.
Resumo:
This paper provides a discussion on future direct current (DC) network development in terms of system protection under DC-side fault scenarios. The argument between appropriate DC circuit breaker and new DC fault-tolerant converters is discussed after a review on DC technology development and bottleneck issues that require proper solutions. The overcurrent/cost curve of power-electronic DC circuit breakers (CB) superimposed to voltage-source converter (VSC) systems is derived and compared with other possible fault-tolerant power conversion options. This in-advance planning of protection capability is essential for the future development of DC networks.
Resumo:
Reliability of power converters is of crucial importance in switched reluctance motor drives used for safety-critical applications. Open-circuit faults in power converters will cause the motor to run in unbalanced states, and if left untreated, they will lead to damage to the motor and power modules, and even cause a catastrophic failure of the whole drive system. This study is focused on using a single current sensor to detect open-circuit faults accurately. An asymmetrical half-bridge converter is considered in this study and the faults of single-phase open and two-phase open are analysed. Three different bus positions are defined. On the basis of a fast Fourier transform algorithm with Blackman window interpolation, the bus current spectrums before and after open-circuit faults are analysed in details. Their fault characteristics are extracted accurately by the normalisations of the phase fundamental frequency component and double phase fundamental frequency component, and the fault characteristics of the three bus detection schemes are also compared. The open-circuit faults can be located by finding the relationship between the bus current and rotor position. The effectiveness of the proposed diagnosis method is validated by the simulation results and experimental tests.
Resumo:
Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of the possibility to reduce losses. Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials, which is consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing the gap between the silver nanorod array and gold substrate.