29 resultados para Johnson, William Eugene, 1862-
Resumo:
The anulus fibrosus (AF) of the intervertebral disc consists of concentric sheets of collagenous matrix that is synthesised during embryogenesis by aligned disc cells. This highly organised structure may be severely disrupted during disc degeneration and/or herniation. Cell scaffolds that incorporate topographical cues as contact guidance have been used successfully to promote the healing of injured tendons. Therefore, we have investigated the effects of topography on disc cell growth. We show that disc cells from the AF and nucleus pulposus (NP) behaved differently in monolayer culture on micro-grooved membranes of polycaprolactone (PCL). Both cell types aligned to and migrated along the membrane's micro-grooves and ridges, but AF cells were smaller (or less spread), more bipolar and better aligned to the micro-grooves than NP cells. In addition, AF cells were markedly more immunopositive for type I collagen, but less immunopositive for chondroitin-6-sulphated proteoglycans than NP cells. There was no evidence of extracellular matrix (ECM) deposition. Disc cells cultured on non-grooved PCL did not show any preferential alignment at sub-confluence and did not differ in their pattern of immunopositivity to those on grooved PCL. We conclude that substratum topography is effective in aligning disc cell growth and may be useful in tissue engineering for the AF. However, there is a need to optimise cell sources and/or environmental conditions (e.g. mechanical influences) to promote the synthesis of an aligned ECM.
Resumo:
In animal models, transplantation of bone marrow stromal cells (MSC) into the spinal cord following injury enhances axonal regeneration and promotes functional recovery. How these improvements come about is currently unclear. We have examined the interaction of MSC with neurons, using an established in vitro model of nerve growth, in the presence of substrate-bound extracellular molecules that are thought to inhibit axonal regeneration, i.e., neural proteoglycans (CSPG), myelin associated glycoprotein (MAG) and Nogo-A. Each of these molecules repelled neurite outgrowth from dorsal root ganglia (DRG) in a concentration-dependent manner. However, these nerve-inhibitory effects were much reduced in MSC/DRG co-cultures. Video microscopy demonstrated that MSC acted as "cellular bridges" and also "towed" neurites over the nerve-inhibitory substrates. Whereas conditioned medium from MSC cultures stimulated DRG neurite outgrowth over type I collagen, it did not promote outgrowth over CSPG, MAG or Nogo-A. These findings suggest that MSC transplantation may promote axonal regeneration both by stimulating nerve growth via secreted factors and also by reducing the nerve-inhibitory effects of the extracellular molecules present.
Resumo:
Study Design. An immunohistological study of surgical specimens of human intervertebral disc.Objective.To examine the presence of pleiotrophin in diseased or damaged intervertebral disc tissue and the association between its presence and the extent of tissue vascularization and innervation.Summary of Background Data. Increased levels of pleiotrophin, a growth and differentiation factor that is active in various pathophysiologic processes, including angiogenesis, has been associated with osteoarthritic changes of human articular cartilage. The association between pleiotrophin expression and pathologic conditions of the human intervertebral disc is unknown.Methods. Specimens of human lumbar intervertebral discs, obtained following surgical discectomy, were divided into 3 groups: nondegenerated discs (n = 7), degenerated discs (n = 6), and prolapsed discs (n = 11). Serial tissue sections of each specimen were immunostained to determine the presence of pleiotrophin, blood vessels (CD34-positive endothelial cells), and nerves (neurofilament 200 kDa [NF200]-positive nerve fibers).Results. Pleiotrophin immunoreactivity was seen in disc cells, endothelial cells, and in the extracellular matrix in most specimens of intervertebral disc but was most prevalent in vascularized tissue in prolapsed discs. There was a significant correlation between the presence of pleiotrophin-positive disc cells and that of CD34-positive blood vessels. NF200-positive nerves were seen in vascularized areas of more degenerated discs, but nerves did not appear to codistribute with blood vessels or pleiotrophin positivity in prolapsed discs.Conclusions. Pleiotrophin is present in pathologic human intervertebral discs, and its prevalence and distribution suggest that it may play a role in neovascularization of diseased or damaged disc tissue.
Resumo:
Study Design. Coculture assays of the migration and interaction of human intervertebral disc cells and chick sensory nerves on alternate substrata of collagen and aggrecan. Objective. To examine the effects of aggrecan on disc cell migration, how disc cells and sensory nerves interact, and whether disc cells affect previously reported inhibitory effects of aggrecan on sensory nerve growth. Summary of Background Data. Human intervertebral disc aggrecan is inhibitory to sensory nerve growth in vitro, suggesting that a loss of aggrecan from the disc may have a role in the increased innervation seen in disc degeneration. Endothelial cells that appear to co-migrate with nerves into degenerated intervertebral disc express neurotrophic factors, but the effects of disc cells on nerve growth are not known. Methods. Human disc cells were seeded onto tissue culture plates that had been coated with type I collagen and human intervertebral disc aggrecan. Explants of chick dorsal root ganglions (DRGs) were subsequently added to the plates and sensory neurite outgrowth stimulated by the addition of nerve growth factor. Time-lapse video and fluorescence microscopy were used to examine the migration and interaction of the disc cells and sensory neurites, in the context of the different matrix substrata. The effects of disc cell conditioned medium on nerve growth were also examined. Results. Disc cells spread and migrated on collagen until they encountered the aggrecan substrata, where some cells, but not all, were repelled. In coculture, DRG neurites extended onto the collagen/disc cells until they encountered the aggrecan, where, like the disc cells, many were repelled. However, in the presence of disc cells, some neurites were able to cross onto this normally inhibitory substratum. The number of neurite crossings onto aggrecan correlated significantly with the number of disc cells present on the aggrecan. In control experiments using DRG alone, all extending neurites were repelled at the collagen/aggrecan border. Conditioned medium from disc cell cultures stimulated DRG neurite outgrowth on collagen but did not increase neurite crossing onto aggrecan substrata. Conclusions. Human disc cells migrate across aggrecan substrata that are repellent to sensory DRG neurites. Disc cells synthesize neurotrophic factors in vitro that promote neurite outgrowth. Furthermore, the presence of disc cells in coculture with DRG partially abrogates the inhibitory effects of aggrecan on nerve growth. These findings have important implications for the regulation of nerve growth into the intervertebral disc, but whether disc cells promote nerve growth in vivo remains to be determined.
Resumo:
STUDY DESIGN: The effect of human intervertebral disc aggrecan on endothelial cell growth was examined using cell culture assays. OBJECTIVE: To determine the response of endothelial cells to human intervertebral disc aggrecan, and whether the amount and type of aggrecan present in the intervertebral disc may be implicated in disc vascularization. SUMMARY OF BACKGROUND DATA: Intervertebral disc degeneration has been associated with a loss of proteoglycan, and the ingrowth of blood vessels and nerves. Neovascularization is a common feature also of disc herniation. Intervertebral disc aggrecan is inhibitory to sensory nerve growth, but the effects of disc aggrecan on endothelial cell growth are not known. METHODS: Aggrecan monomers were isolated separately from the anulus fibrosus and nucleus pulposus of human lumbar intervertebral discs, and characterized to determine the amount and type of sulfated glycosaminoglycan side chains present. The effects of these aggrecan isolates on the cellular adhesion and migration of the human endothelial cell lines, HMEC-1 and EAhy-926, were examined in vitro. RESULTS: Homogenous substrata of disc aggrecan inhibited endothelial cell adhesion and cell spreading in a concentration dependent manner. In substrata choice assays, endothelial cells seeded onto collagen type I migrated over the collagen until they encountered substrata of disc aggrecan, where they either stopped migrating, retreated onto the collagen, or, more commonly, changed direction to align along the collagen-aggrecan border. The inhibitory effect of aggrecan on endothelial cell migration was concentration dependent, and reduced by enzymatic treatment of the aggrecan monomers with a combination of chondroitinase ABC and keratinase/keratinase II. Anulus fibrosus aggrecan was more inhibitory to endothelial cell adhesion than nucleus pulposus aggrecan. However, this difference did not relate to the extent to which the different aggrecan isolates were charged, as determined by colorimetric assay with 1,9-dimethylmethylene blue, or to marked differences in the distribution of chondroitin sulfated and keratan sulfated side chains. CONCLUSIONS: Human intervertebral disc aggrecan is inhibitory to endothelial cell migration, and this inhibitory effect appears to depend, in part, on the presence of glycosaminoglycan side chains on the aggrecan monomer.
Resumo:
OBJECTIVE: To assess the effects of human intervertebral disc aggrecan on nerve growth and guidance, using in vitro techniques. METHODS: Aggrecan extracted from human lumbar intervertebral discs was incorporated into tissue culture substrata for the culture of the human neuronal cell line, SH-SY5Y, or explants of chick dorsal root ganglia. The effects on nerve growth of different concentrations of aggrecan extracted from the anulus fibrosus and nucleus pulposus, and of these aggrecan preparations following enzymic deglycosylation, were compared. RESULTS: Disc aggrecan inhibited the growth of neurites from SH-SY5Y cells and induced growth cone turning of chick sensory neurites in a concentration-dependent manner. Aggrecan isolated from the anulus fibrosus was more inhibitory than that isolated from the nucleus pulposus, but enzymic pretreatments to reduce the glycosylation of both types of disc aggrecan partially abrogated their inhibitory effects. CONCLUSION: Nerve growth into degenerate intervertebral discs has been linked with the development of low back pain, but little is known about factors affecting disc innervation. The finding that disc aggrecan inhibits nerve growth in vitro, and that this inhibitory activity depends on aggrecan glycosylation, has important implications for our understanding of mechanisms that may regulate disc innervation in health and disease.
Resumo:
Background context Transplantation of bone marrow cells into spinal cord lesions promotes functional recovery in animal models, and recent clinical trials suggest possible recovery also in humans. The mechanisms responsible for these improvements are still unclear. Purpose To characterize spinal cord motor neurite interactions with human bone marrow stromal cells (MSCs) in an in vitro model of spinal cord injury (SCI). Study design/setting Previously, we have reported that human MSCs promote the growth of extending sensory neurites from dorsal root ganglia (DRG), in the presence of some of the molecules present in the glial scar, which are attributed with inhibiting axonal regeneration after SCI. We have adapted and optimized this system replacing the DRG with a spinal cord culture to produce a central nervous system (CNS) model, which is more relevant to the SCI situation. Methods We have developed and characterized a novel spinal cord culture system. Human MSCs were cocultured with spinal motor neurites in substrate choice assays containing glial scar-associated inhibitors of nerve growth. In separate experiments, MSC-conditioned media were analyzed and added to spinal motor neurites in substrate choice assays. Results As has been reported previously with DRG, substrate-bound neurocan and Nogo-A repelled spinal neuronal adhesion and neurite outgrowth, but these inhibitory effects were abrogated in MSC/spinal cord cocultures. However, unlike DRG, spinal neuronal bodies and neurites showed no inhibition to substrates of myelin-associated glycoprotein. In addition, the MSC secretome contained numerous neurotrophic factors that stimulated spinal neurite outgrowth, but these were not sufficient stimuli to promote spinal neurite extension over inhibitory concentrations of neurocan or Nogo-A. Conclusions These findings provide novel insight into how MSC transplantation may promote regeneration and functional recovery in animal models of SCI and in the clinic, especially in the chronic situation in which glial scars (and associated neural inhibitors) are well established. In addition, we have confirmed that this CNS model predominantly comprises motor neurons via immunocytochemical characterization. We hope that this model may be used in future research to test various other potential interventions for spinal injury or disease states. © 2014 Elsevier Inc. All rights reserved.
Resumo:
Retinoic acid (RA) signaling is important to normal development. However, the function of the different RA receptors (RARs)-RARα, RARβ, and RARγ-is as yet unclear. We have used wild-type and transgenic zebrafish to examine the role of RARγ. Treatment of zebrafish embryos with an RARγ-specific agonist reduced somite formation and axial length, which was associated with a loss of hoxb13a expression and less-clear alterations in hoxc11a or myoD expression. Treatment with the RARγ agonist also disrupted formation of tissues arising from cranial neural crest, including cranial bones and anterior neural ganglia. There was a loss of Sox 9-immunopositive neural crest stem/progenitor cells in the same anterior regions. Pectoral fin outgrowth was blocked by RARγ agonist treatment. However, there was no loss of Tbx-5-immunopositive lateral plate mesodermal stem/progenitor cells and the block was reversed by agonist washout or by cotreatment with an RARγ antagonist. Regeneration of the caudal fin was also blocked by RARγ agonist treatment, which was associated with a loss of canonical Wnt signaling. This regenerative response was restored by agonist washout or cotreatment with the RARγ antagonist. These findings suggest that RARγ plays an essential role in maintaining stem/progenitor cells during embryonic development and tissue regeneration when the receptor is in its nonligated state.
Resumo:
Previous studies have described alterations in gene expression following spinal cord injury, but this response to mechanical stimuli is difficult to investigate in vivo. Therefore, we have investigated the effect of cyclic tensile strain on cultured spinal cord cells from E15 Sprague-Dawley rats. Microarray analysis of gene expression and categorization of identified genes were performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) systems. The application of cyclic tensile strain reduced the viability of cultured spinal cord cells significantly in a dose- and time-dependent manner. GO analysis identified candidate genes related to apoptosis (44) and to response to stimulus (17). KEGG analysis identified changes in the expression levels of 12 genes of the mitogen-activated protein kinase (MAPK) signaling pathway, which were confirmed to be upregulated and validated by RT-PCR analysis. Spinal cord cells undergo cell death in response to cyclic tensile strain, which were dose- and time-dependent, with upregulation of various genes, in particular of the MAPK pathway.
Resumo:
Spinal cord injury is a complex pathology often resulting in functional impairment and paralysis. Gene therapy has emerged as a possible solution to the problems of limited neural tissue regeneration through the administration of factors promoting axonal growth, while also offering long-term local delivery of therapeutic molecules at the injury site. Of note, gene therapy is our response to the requirements of neural and glial cells following spinal cord injury, providing, in a time-dependent manner, growth substances for axonal regeneration and eliminating axonal growth inhibitors. Herein, we explore different gene therapy strategies, including targeting gene expression to modulate the presence of neurotrophic growth or survival factors and increase neural tissue plasticity. Special attention is given to describing advances in viral and non-viral gene delivery systems, as well as the available routes of gene delivery. Finally, we discuss the future of combinatorial gene therapies and give consideration to the implementation of gene therapy in humans. © 2014 Future Science Ltd.
Resumo:
Mesenchymal stem cells (MSCs) stimulate angiogenesis within a wound environment and this effect is mediated through paracrine interactions with the endothelial cells present. Here we report that human MSC-conditioned medium (n=3 donors) significantly increased EaHy-926 endothelial cell adhesion and cell migration, but that this stimulatory effect was markedly donor-dependent. MALDI-TOF/TOF mass spectrometry demonstrated that whilst collagen type I and fibronectin were secreted by all of the MSC cultures, the small leucine rich proteoglycan, decorin was secreted only by the MSC culture that was least effective upon EaHy-926 cells. These individual extracellular matrix components were then tested as culture substrata. EaHy-926 cell adherence was greatest on fibronectin-coated surfaces with least adherence on decorin-coated surfaces. Scratch wound assays were used to examine cell migration. EaHy-926 cell scratch wound closure was quickest on substrates of fibronectin and slowest on decorin. However, EaHy-926 cell migration was stimulated by the addition of MSC-conditioned medium irrespective of the types of culture substrates. These data suggest that whilst the MSC secretome may generally be considered angiogenic, the composition of the secretome is variable and this variation probably contributes to donor-donor differences in activity. Hence, screening and optimizing MSC secretomes will improve the clinical effectiveness of pro-angiogenic MSC-based therapies.
Resumo:
Bone marrow-derived mesenchymal stem cells (BMSC) modulate inflammatory/immune responses and promote motor functional recovery after spinal cord injury (SCI). However, the effects of BMSC transplantation on central neuropathic pain and neuronal hyperexcitability after SCI remain elusive. This is of importance because BMSC-based therapies have been proposed for clinical treatment. We investigated the effects of BMSC transplantation on pain hypersensitivity in green fluorescent protein (GFP)-positive bone marrow-chimeric mice subjected to a contusion SCI, and the mechanisms of such effects. BMSC transplantation at day 3 post-SCI improved motor function and relieved SCI-induced hypersensitivities to mechanical and thermal stimulation. The pain improvements were mediated by suppression of protein kinase C-γ and phosphocyclic AMP response element binding protein expression in dorsal horn neurons. BMSC transplants significantly reduced levels of p-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (p-ERK1/2) in both hematogenous macrophages and resident microglia and significantly reduced the infiltration of CD11b and GFP double-positive hematogenous macrophages without decreasing the CD11b-positive and GFP-negative activated spinal-microglia population. BMSC transplants prevented hematogenous macrophages recruitment by restoration of the blood-spinal cord barrier (BSCB), which was associated with decreased levels of (a) inflammatory cytokines (tumor necrosis factor-α, interleukin-6); (b) mediators of early secondary vascular pathogenesis (matrix metallopeptidase 9); (c) macrophage recruiting factors (CCL2, CCL5, and CXCL10), but increased levels of a microglial stimulating factor (granulocyte-macrophage colony-stimulating factor). These findings support the use of BMSC transplants for SCI treatment. Furthermore, they suggest that BMSC reduce neuropathic pain through a variety of related mechanisms that include neuronal sparing and restoration of the disturbed BSCB, mediated through modulation of the activity of spinal-resident microglia and the activity and recruitment of hematogenous macrophages.
Resumo:
The objective of this study was to clarify the effects of a temporal blockade of IL-6/IL-6 receptor (IL-6R) engagement, using an anti-mouse IL-6R monoclonal antibody (MR16-1), on macrophage activation and the inflammatory response in the acute phase after spinal cord injury (SCI) in mice. MR16-1 antibodies versus isotype control antibodies or saline alone was administered immediately after thoracic SCI in mice. MR16-1-treated group samples showed increased neuronal regeneration and locomotor recovery compared with controls. Immunoblot analysis of the MR16-1-treated samples identified downregulation of Th1 and upregulation of Th2 cytokines. MR16-1 treatment promoted arginase-1-positive, CD206-positive M2 macrophages, with preferential localization of these cells at the injury site and enhanced positivity for Mac-2 and Mac-3, suggestive of increased phagocytic behavior. The results suggest that temporal blockade of IL-6 signaling after SCI abrogates damaging inflammatory activity and promotes functional recovery by promoting the formation of alternatively activated M2 macrophages.
Resumo:
Aim. To compare the incorporation, growth, and chondrogenic potential of bone marrow (BM) and adipose tissue (AT) mesenchymal stem cells (MSCs) in scaffolds used for cartilage repair. Methods. Human BM and AT MSCs were isolated, culture expanded, and characterised using standard protocols, then seeded into 2 different scaffolds, Chondro-Gide or Alpha Chondro Shield. Cell adhesion, incorporation, and viable cell growth were assessed microscopically and following calcein AM/ethidium homodimer (Live/Dead) staining. Cell-seeded scaffolds were treated with chondrogenic inducers for 28 days. Extracellular matrix deposition and soluble glycosaminoglycan (GAG) release into the culture medium was measured at day 28 by histology/immunohistochemistry and dimethylmethylene blue assay, respectively. Results. A greater number of viable MSCs from either source adhered and incorporated into Chondro-Gide than into Alpha Chondro Shield. In both cell scaffolds, this incorporation represented less than 2% of the cells that were seeded. There was a marked proliferation of BM MSCs, but not AT MSCs, in Chondro-Gide. MSCs from both sources underwent chondrogenic differentiation following induction. However, cartilaginous extracellular matrix deposition was most marked in Chondro- Gide seeded with BM MSCs. Soluble GAG secretion increased in chondrogenic versus control conditions. There was no marked difference in GAG secretion by MSCs from either cell source. Conclusion. Chondro-Gide and Alpha Chondro Shield were permissive to the incorporation and chondrogenic differentiation of human BM and AT MSCs. Chondro-Gide seeded with BM MSCs demonstrated the greatest increase in MSC number and deposition of a cartilaginous tissue.