87 resultados para Jamin shearing interferometer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approach to realizing simultaneous measurement of refractive index (RI) and temperature based on a microfiber-based dual inline Mach-Zehnder interferometer (MZI) is proposed and demonstrated. Due to different interference mechanisms, as one interference between the core mode and the lower order cladding mode in the sensing single-mode fiber and the other interference between the fundamental mode and the high-order mode in the multimode microfiber, the former interferometer achieves RI sensitivity of -23.67 nm/RIU and temperature sensitivity of 81.2 pm/oC, whereas those of the latter are 3820.23 nm/RIU, and -465.7 pm/oC, respectively. The large sensitivity differences can provide a more accurate demodulation of RI and temperature. The sensor is featured with multiparameters measurement, compact structure, high sensitivity, low cost, and easy fabrication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modal interferometer based on multimode-singlemode-multimode fiber structure built with a biconical taper for fiber curvature measurement is proposed and experimentally demonstrated. Due to the tapered singlemode fiber acting as a high-efficient mode power converter to enhance the modes coupling, curvature sensor with improved sensitivity is achieved by monitoring the defined fringe visibility of the interference spectrum. The measuring range can be tuned by changing the waist diameter of the fiber taper. Meanwhile, the sensor shows an intrinsic ability to overcome the influence of temperature cross-sensitivity and the power fluctuation of light source. The advantages of easy fabrication, high-quality spectrum with improved sensitivity, and small hysteresis will provide great potential for practical applications of the sensor. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A photonic crystal fiber (PCF) interferometer that exhibits record fringe contrast (~40 dB) is demonstrated along with its sensing applications. The device operates in reflection mode and consists of a centimeter-long segment of properly selected PCF fusion spliced to single mode optical fibers. Two identical collapsed zones in the PCF combined with its modal properties allow high-visibility interference patterns. The interferometer is suitable for refractometric and liquid level sensing. The measuring refractive index range goes from 1.33 to 1.43 and the maximum resolution is ~1.6 × 10-5. © 2013 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a self-reference multiplexed fibre interferometer (MFI) by using a tunable laser and fibre Bragg grating (FBG). The optical measurement system multiplexes two Michelson fibre interferometers with shared optical path in the main part of optical system. One fibre optic interferometer is used as a reference interferometer to monitor and control the high accuracy of the measurement system under environmental perturbations. The other is used as a measurement interferometer to obtain information from the target. An active phase tracking homodyne (APTH) technique is applied for signal processing to achieve high resolution. MFI can be utilised for high precision absolute displacement measurement with different combination of wavelengths from the tuneable laser. By means of Wavelength-Division-Multiplexing (WDM) technique, MFI is also capable of realising on-line surface measurement, in which traditional stylus scanning is replaced by spatial light-wave scanning so as to greatly improve the measurement speed and robustness. © 2004 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optical in-fiber modal interferometer-based volume strain sensor for earthquake prediction is proposed and experimentally demonstrated. The sensing element is formed by wrapping a multimode-singlemode-multimode fiber structure onto a polyurethane hollow column. Due to the modal interference between the excited guided modes in the fiber, strong interference pattern could be observed in the transmission spectrum. Theoretical analysis verifies that the resonant wavelength shifts as a result of the volume strain variation caused by the column deformation with square root relationship. Sensitivity > 3.93 pm/με within the volume strain ranging from 0 to 1300 με is also experimentally demonstrated. By taking the response of bidirectional change of volume strain and the sluggish character of the employed sensing material into consideration, the sensing system presents good repeatability and stability. © 2001-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multimode microfiber (MMMF)-based dual Mach-Zehnder interferometer (MZI) is proposed and demonstrated for simultaneous measurement of refractive index (RI) and temperature. By inserting a section of MMMFsupporting a few modes in the sensing arm of the MZI setup, an inline interference between the fundamental mode and the high-order mode of MMMF, as well as the interference between the high-order mode of MMMF and the reference arm, i.e., the dual MZI, is realized. Due to different interference mechanisms, the former interferometer achieves RI sensitivity of 2576.584 nm/RIU and temperature sensitivity of 0.193 nm/°C, while the latter one achieves RI sensitivity of 1001.864 nm/RIU and temperature sensitivity of 0.239 nm/°C, demonstrating the ability to attain highly accurate multiparameter measurements. © 2014 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose and demonstrate a microfiber Fabry-Perot interferometer (MFPI) fabricated by taper-drawing microfiber at the center of a uniform fiber Bragg grating (FBG). The MFPI employing the two separated sections of FBG as reflectors and a length of microfiber as its cavity is derived. Theoretic study shows that the reflection spectrum of such MFPI is consisted of two parts-interference fringes induced by multi-beam interference and reflection spectrum envelope induced by FBGs. Temperature affects both interference fringes and reflection wavelength of FBGs while ambient refractive index (RI) only influences the interference fringes, i.e., MFPI has different response to temperature and RI. Therefore, MFPI for simultaneous sensing of RI and temperature is experimentally demonstrated by tracking a reflection peak of interference fringes and the Bragg wavelength of the FBGs, which are respectively assisted by frequency domain processing and Gaussian fitting of the optical spectrum. Consequently, wavelength measurement resolution of 0.5 pm is realized. © 1983-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple fiber sensor capable of simultaneous measurement of liquid level and refractive index (RI) is proposed and experimentally demonstrated. The sensing head is an all-fiber modal interferometer manufactured by splicing an uncoated single-mode fiber with two short sections of multimode fiber. The interference pattern experiences blue shift along with an increase of axial strain and surrounding RI. Owing to the participation of multiple cladding modes with different sensitivities, the height and RI of the liquid could be simultaneously measured by monitoring two dips of the transmission spectrum. Experimental results show that the liquid level and RI sensitivities of the two dips are 245.7 pm/mm, -38 nm/RI unit (RIU), and 223.7 pm/mm, -62 nm/RIU, respectively. The approach has distinctive advantages of easy fabrication, low cost, and high sensitivity for liquid level detection with the capability of distinguishing the RI variation simultaneously. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bending sensor is achieved by employing a singlemode fiber-dual core photonic crystal fiber- singlemode fiber (SDS) structure with two tapers at fusing points. A sensitivity of - 4.3421nm/m∼ between the transmission spectra shift and curvature is demonstrated. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an in-fiber Mach-Zehnder interferometer formed by a pair of largely tilted fiber gratings. The interference spectral characteristics have been investigated. The experimental results using this device as a chemical sensor have a sensitivity as high as 719nm/RIU. © 2012 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact and low cost fiber sensor based on single multimode microfiber with Fresnel reflection is proposed and demonstrated for simultaneous measurement of refractive index and temperature. The sensor is fabricated with two simple steps including fiber tapering and then fiber endface cleaving. The reflection spectrum is an intensity modulated interference spectrum, as the tapered fiber generates interference pattern and the cleaved endface provides intensity modulation. By demodulating the fringe power and free spectrum range (FSR) of the spectrum, RI sensitivities of -72.247dB/RIU and 68.122nm/RIU, as well as temperature sensitivities of 0.0283dB/degrees C and -17pm/degrees C are obtained. Further, the sensing scheme could also provide the feasibility to construct a more compact sensing probe for dual-paramters measurement, which has great potential in bio/chemical detection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe an all-fibre, passive scheme for making extended range interferometric measurements based on the dual wavelength technique. The coherence tuned interferometer network is illuminated with a single superfluorescent fibre source at 1.55 µm and the two wavelengths are synthesised at the output by means of chirped fibre Bragg gratings. We demonstrate an unambiguous sensing range of 270 µm, with a dynamic range of 2.7 × 10 5.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new method for the interrogation of large arrays of Bragg grating sensors. Eight gratings operating between the wavelengths of 1533 and 1555 nm have been demultiplexed. An unbalanced Mach—Zehnder interferometer illuminated by a single low-coherence source provides a high-phase-resolution output for each sensor, the outputs of which are sequentially selected in wavelength by a tunable Fabry-Perot interferometer. The minimum detectable strain measured was 90 ne-vHz at 7 Hz for a wavelength of 1535 nm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We experimentally investigate the use of an arrayed waveguide grating (AWG) to interrogate interferometric sensors. A single broad-band light source is used to illuminate the system. Reflected spectral information is directed to an AWG with integral photodetectors providing 40 electrical outputs. We show that using the dual-wavelength technique we can measure the length of a Fabry-Perot cavity by determining the optical phase changes of the scanned interferometric pattern, which produced a maximum unambiguous range of 1440 mum with an active sensor and a maximum unambiguous range of 300 mum with the introduction of a second processing interferometer, which allows the sensor to be passive.