26 resultados para Interpolation variance
Resumo:
Interpolated data are an important part of the environmental information exchange as many variables can only be measured at situate discrete sampling locations. Spatial interpolation is a complex operation that has traditionally required expert treatment, making automation a serious challenge. This paper presents a few lessons learnt from INTAMAP, a project that is developing an interoperable web processing service (WPS) for the automatic interpolation of environmental data using advanced geostatistics, adopting a Service Oriented Architecture (SOA). The “rainbow box” approach we followed provides access to the functionality at a whole range of different levels. We show here how the integration of open standards, open source and powerful statistical processing capabilities allows us to automate a complex process while offering users a level of access and control that best suits their requirements. This facilitates benchmarking exercises as well as the regular reporting of environmental information without requiring remote users to have specialized skills in geostatistics.
Resumo:
INTAMAP is a Web Processing Service for the automatic spatial interpolation of measured point data. Requirements were (i) using open standards for spatial data such as developed in the context of the Open Geospatial Consortium (OGC), (ii) using a suitable environment for statistical modelling and computation, and (iii) producing an integrated, open source solution. The system couples an open-source Web Processing Service (developed by 52°North), accepting data in the form of standardised XML documents (conforming to the OGC Observations and Measurements standard) with a computing back-end realised in the R statistical environment. The probability distribution of interpolation errors is encoded with UncertML, a markup language designed to encode uncertain data. Automatic interpolation needs to be useful for a wide range of applications and the algorithms have been designed to cope with anisotropy, extreme values, and data with known error distributions. Besides a fully automatic mode, the system can be used with different levels of user control over the interpolation process.
Resumo:
This article investigates the performance of a model called Full-Scale Optimisation, which was presented recently and is used for financial investment advice. The investor’s preferences of expected risk and return are entered into the model, and a recommended portfolio is produced. This model is theoretically more accurate than the mainstream investment advice model, called Mean-Variance Optimization, as there are fewer assumptions made. Our investigation of the model’s performance is broader when it comes to investor preferences, and more general when it comes to investment type, as compared to previous studies. Our investigation shows that Full-Scale Optimisation is more widely applicable than earlier known.
Resumo:
In this chapter we present the relevant mathematical background to address two well defined signal and image processing problems. Namely, the problem of structured noise filtering and the problem of interpolation of missing data. The former is addressed by recourse to oblique projection based techniques whilst the latter, which can be considered equivalent to impulsive noise filtering, is tackled by appropriate interpolation methods.
Resumo:
Our goal was to investigate auditory and speech perception abilities of children with and without reading disability (RD) and associations between auditory, speech perception, reading, and spelling skills. Participants were 9-year-old, Finnish-speaking children with RD (N = 30) and typically reading children (N = 30). Results showed significant group differences between the groups in phoneme duration discrimination but not in perception of amplitude modulation and rise time. Correlations among rise time discrimination, phoneme duration, and spelling accuracy were found for children with RD. Those children with poor rise time discrimination were also poor in phoneme duration discrimination and in spelling. Results suggest that auditory processing abilities could, at least in some children, affect speech perception skills, which in turn would lead to phonological processing deficits and dyslexia.
Resumo:
The last major study of sales performance variance explained by salespeople attributes was by Churchill et al. (1985). They examined the effect of role, skills, motivation, personal factors, aptitude, and organizational/environmental factors on sales performance—factors that have dominated the sales performance area. About the same time, Weitz, Sujan, and Sujan (1986) introduced the concepts of salespeople's knowledge structures. Considerable work on the relationship of the elements of knowledge structures and performance can be found in the literature. In this research note, we determine the degree to which sales performance can be explained by knowledge structure variables, a heretofore unexplored area. If knowledge structure variables explain more variance than traditional variables, then this paper would be a call to further research in this area. In examining this research question in a retail context, we find that knowledge structure variables explain 50.2 percent of the variance in sales performance. We also find that variance explained by knowledge structures is significantly different based on gender. The impact of knowledge structures on performance was higher for men than for women. The models using education demonstrated smaller differences.
Resumo:
In Statnote 9, we described a one-way analysis of variance (ANOVA) ‘random effects’ model in which the objective was to estimate the degree of variation of a particular measurement and to compare different sources of variation in space and time. The illustrative scenario involved the role of computer keyboards in a University communal computer laboratory as a possible source of microbial contamination of the hands. The study estimated the aerobic colony count of ten selected keyboards with samples taken from two keys per keyboard determined at 9am and 5pm. This type of design is often referred to as a ‘nested’ or ‘hierarchical’ design and the ANOVA estimated the degree of variation: (1) between keyboards, (2) between keys within a keyboard, and (3) between sample times within a key. An alternative to this design is a 'fixed effects' model in which the objective is not to measure sources of variation per se but to estimate differences between specific groups or treatments, which are regarded as 'fixed' or discrete effects. This statnote describes two scenarios utilizing this type of analysis: (1) measuring the degree of bacterial contamination on 2p coins collected from three types of business property, viz., a butcher’s shop, a sandwich shop, and a newsagent and (2) the effectiveness of drugs in the treatment of a fungal eye infection.
Resumo:
Infantile Nystagmus Syndrome, or Congenital Nystagmus, is an ocular-motor disorder characterized by involuntary, conjugated and bilateral to and fro ocular oscillations. Good visual acuity in congenital nystagmus can be achieved during the foveation periods in which eye velocity slows down while the target image crosses the fovea. Visual acuity was found to be mainly dependent on the duration of the foveation periods. In this work a new approach is proposed for estimation of foveation parameters: a cubic spline interpolation of the nystagmus recording before localizing the start point of foveation window and to estimate its duration. The performances of the proposed algorithm were assessed in comparison with a previously developed algorithm, used here as gold standard. The obtained results suggest that the spline interpolation could be a useful tool to filter the eye movement recordings before applying an algorithm to estimate the foveation window parameters. © 2013 IEEE.
Resumo:
Accurate measurement of intervertebral kinematics of the cervical spine can support the diagnosis of widespread diseases related to neck pain, such as chronic whiplash dysfunction, arthritis, and segmental degeneration. The natural inaccessibility of the spine, its complex anatomy, and the small range of motion only permit concise measurement in vivo. Low dose X-ray fluoroscopy allows time-continuous screening of cervical spine during patient's spontaneous motion. To obtain accurate motion measurements, each vertebra was tracked by means of image processing along a sequence of radiographic images. To obtain a time-continuous representation of motion and to reduce noise in the experimental data, smoothing spline interpolation was used. Estimation of intervertebral motion for cervical segments was obtained by processing patient's fluoroscopic sequence; intervertebral angle and displacement and the instantaneous centre of rotation were computed. The RMS value of fitting errors resulted in about 0.2 degree for rotation and 0.2 mm for displacements. © 2013 Paolo Bifulco et al.
Resumo:
Cardiotocographic data provide physicians information about foetal development and permit to assess conditions such as foetal distress. An incorrect evaluation of the foetal status can be of course very dangerous. To improve interpretation of cardiotocographic recordings, great interest has been dedicated to foetal heart rate variability spectral analysis. It is worth reminding, however, that foetal heart rate is intrinsically an uneven series, so in order to produce an evenly sampled series a zero-order, linear or cubic spline interpolation can be employed. This is not suitable for frequency analyses because interpolation introduces alterations in the foetal heart rate power spectrum. In particular, interpolation process can produce alterations of the power spectral density that, for example, affects the estimation of the sympatho-vagal balance (computed as low-frequency/high-frequency ratio), which represents an important clinical parameter. In order to estimate the frequency spectrum alterations of the foetal heart rate variability signal due to interpolation and cardiotocographic storage rates, in this work, we simulated uneven foetal heart rate series with set characteristics, their evenly spaced versions (with different orders of interpolation and storage rates) and computed the sympatho-vagal balance values by power spectral density. For power spectral density estimation, we chose the Lomb method, as suggested by other authors to study the uneven heart rate series in adults. Summarising, the obtained results show that the evaluation of SVB values on the evenly spaced FHR series provides its overestimation due to the interpolation process and to the storage rate. However, cubic spline interpolation produces more robust and accurate results. © 2010 Elsevier Ltd. All rights reserved.
Resumo:
Heterogeneous datasets arise naturally in most applications due to the use of a variety of sensors and measuring platforms. Such datasets can be heterogeneous in terms of the error characteristics and sensor models. Treating such data is most naturally accomplished using a Bayesian or model-based geostatistical approach; however, such methods generally scale rather badly with the size of dataset, and require computationally expensive Monte Carlo based inference. Recently within the machine learning and spatial statistics communities many papers have explored the potential of reduced rank representations of the covariance matrix, often referred to as projected or fixed rank approaches. In such methods the covariance function of the posterior process is represented by a reduced rank approximation which is chosen such that there is minimal information loss. In this paper a sequential Bayesian framework for inference in such projected processes is presented. The observations are considered one at a time which avoids the need for high dimensional integrals typically required in a Bayesian approach. A C++ library, gptk, which is part of the INTAMAP web service, is introduced which implements projected, sequential estimation and adds several novel features. In particular the library includes the ability to use a generic observation operator, or sensor model, to permit data fusion. It is also possible to cope with a range of observation error characteristics, including non-Gaussian observation errors. Inference for the covariance parameters is explored, including the impact of the projected process approximation on likelihood profiles. We illustrate the projected sequential method in application to synthetic and real datasets. Limitations and extensions are discussed. © 2010 Elsevier Ltd.