57 resultados para Interference Suppression
Resumo:
A well-known property of orientation-tuned neurons in the visual cortex is that they are suppressed by the superposition of an orthogonal mask. This phenomenon has been explained in terms of physiological constraints (synaptic depression), engineering solutions for components with poor dynamic range (contrast normalization) and fundamental coding strategies for natural images (redundancy reduction). A common but often tacit assumption is that the suppressive process is equally potent at different spatial and temporal scales of analysis. To determine whether it is so, we measured psychophysical cross-orientation masking (XOM) functions for flickering horizontal Gabor stimuli over wide ranges of spatio-temporal frequency and contrast. We found that orthogonal masks raised contrast detection thresholds substantially at low spatial frequencies and high temporal frequencies (high speeds), and that small and unexpected levels of facilitation were evident elsewhere. The data were well fit by a functional model of contrast gain control, where (i) the weight of suppression increased with the ratio of temporal to spatial frequency and (ii) the weight of facilitatory modulation was the same for all conditions, but outcompeted by suppression at higher contrasts. These results (i) provide new constraints for models of primary visual cortex, (ii) associate XOM and facilitation with the transient magno- and sustained parvostreams, respectively, and (iii) reconcile earlier conflicting psychophysical reports on XOM.
Resumo:
We present a new form of contrast masking in which the target is a patch of low spatial frequency grating (0.46 c/deg) and the mask is a dark thin ring that surrounds the centre of the target patch. In matching and detection experiments we found little or no effect for binocular presentation of mask and test stimuli. But when mask and test were presented briefly (33 or 200 ms) to different eyes (dichoptic presentation), masking was substantial. In a 'half-binocular' condition the test stimulus was presented to one eye, but the mask stimulus was presented to both eyes with zero-disparity. This produced masking effects intermediate to those found in dichoptic and full-binocular conditions. We suggest that interocular feature matching can attenuate the potency of interocular suppression, but unlike in previous work (McKee, S. P., Bravo, M. J., Taylor, D. G., & Legge, G. E. (1994) Stereo matching precedes dichoptic masking. Vision Research, 34, 1047) we do not invoke a special role for depth perception. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
Efficient suppression of relaxation oscillations in the output signal from an overdriven gain-switched laser diode was demonstrated. Several quantum-well distributed feedback laser diodes from different manufacturers were used for experimental analysis. A five-fold increase in the peak power was achieved for the tail-free operation. It was found that spectral filtering removed the nonlinearly chirped components resulting in pulse shortening by a factor of three.
Resumo:
We report all-fiber polarization interference filters, known as Lyot and Lyot-Ohman filters, based on alternative concatenation of UV-inscribed fiber gratings with structure tilted at 45° and polarization maintaining (PM) fiber cavities. Such filters generate comb-like transmission of linear polarization output. The free spectral range (FSR) of a single-stage (Lyot) filter is PM fiber cavity length dependent, as a 20 cm long cavity showed a 26.6 nm FSR while the 40 cm one exhibited a 14.8 nm FSR. Furthermore, we have theoretically and experimentally demonstrated all-fiber 2-stage and 3-stage Lyot-Ohman filters, giving more freedom in tailoring the transmission characteristics.
Resumo:
The mechanism of "Helical Interference" in milled slots is examined and a coherent theory for the geometry of such surfaces is presented. An examination of the relevant literature shows a fragmented approach to the problem owing to its normally destructive nature, so a complete analysis is developed for slots of constant lead, thus giving a united and exact theory for many different setting parameters and a range of cutter shapes. For the first time, a theory is developed to explain the "Interference Surface" generated in variable lead slots for cylindrical work and attention is drawn to other practical surfaces, such as cones, where variable leads are encountered. Although generally outside the scope of this work, an introductory analysis of these cases is considered in order to develop the cylindrical theory. Special emphasis is laid upon practical areas where the interference mechanism can be used constructively and its application as the rake face of a cutting tool is discussed. A theory of rake angle for such cutting tools is given for commonly used planes, and relative variations in calculated rake angle between planes is examined. Practical tests are conducted to validate both constant lead and variable lead theories and some design improvements to the conventional dividing head are suggested in order to manufacture variable lead workpieces, by use of a "superposed" rotation. A prototype machine is manufactured and its kinematic principle given for both linear and non-linearly varying superposed rotations. Practical workpieces of the former type are manufactured and compared with analytical predictions,while theoretical curves are generated for non-linear workpieces and then compared with those of linear geometry. Finally suggestions are made for the application of these principles to the manufacture of spiral bevel gears, using the "Interference Surface" along a cone as the tooth form.
Resumo:
A distinct feature of several recent models of contrast masking is that detecting mechanisms are divisively inhibited by a broadly tuned ‘gain pool’ of narrow-band spatial pattern mechanisms. The contrast gain control provided by this ‘cross-channel’ architecture achieves contrast normalisation of early pattern mechanisms, which is important for keeping them within the non-saturating part of their biological operating characteristic. These models superseded earlier ‘within-channel’ models, which had supposed that masking arose from direct stimulation of the detecting mechanism by the mask. To reveal the extent of masking, I measured the levels produced with large ranges of pattern spatial relationships that have not been explored before. Substantial interactions between channels tuned to different orientations and spatial frequencies were found. Differences in the masking levels produced with single and multiple component mask patterns provided insights into the summation rules within the gain pool. A widely used cross-channel masking model was tested on these data and was found to perform poorly. The model was developed and a version in which linear summation was allowed between all components within the gain pool but with the exception of the self-suppressing route typically provided the best account of the data. Subsequently, an adaptation paradigm was used to probe the processes underlying pooled responses in masking. This delivered less insight into the pooling than the other studies and areas were identified that require investigation for a new unifying model of masking and adaptation. In further experiments, levels of cross-channel masking were found to be greatly influenced by the spatio-temporal tuning of the channels involved. Old masking experiments and ideas relying on within-channel models were re-elevated in terms of contemporary cross-channel models (e.g. estimations of channel bandwidths from orientation masking functions) and this led to different conclusions than those originally arrived at. The investigation of effects with spatio-temporally superimposed patterns is focussed upon throughout this work, though it is shown how these enquiries might be extended to investigate effects across spatial and temporal position.
Resumo:
A methodology is presented which can be used to produce the level of electromagnetic interference, in the form of conducted and radiated emissions, from variable speed drives, the drive that was modelled being a Eurotherm 583 drive. The conducted emissions are predicted using an accurate circuit model of the drive and its associated equipment. The circuit model was constructed from a number of different areas, these being: the power electronics of the drive, the line impedance stabilising network used during the experimental work to measure the conducted emissions, a model of an induction motor assuming near zero load, an accurate model of the shielded cable which connected the drive to the motor, and finally the parasitic capacitances that were present in the drive modelled. The conducted emissions were predicted with an error of +/-6dB over the frequency range 150kHz to 16MHz, which compares well with the limits set in the standards which specify a frequency range of 150kHz to 30MHz. The conducted emissions model was also used to predict the current and voltage sources which were used to predict the radiated emissions from the drive. Two methods for the prediction of the radiated emissions from the drive were investigated, the first being two-dimensional finite element analysis and the second three-dimensional transmission line matrix modelling. The finite element model took account of the features of the drive that were considered to produce the majority of the radiation, these features being the switching of the IGBT's in the inverter, the shielded cable which connected the drive to the motor as well as some of the cables that were present in the drive.The model also took account of the structure of the test rig used to measure the radiated emissions. It was found that the majority of the radiation produced came from the shielded cable and the common mode currents that were flowing in the shield, and that it was feasible to model the radiation from the drive by only modelling the shielded cable. The radiated emissions were correctly predicted in the frequency range 30MHz to 200MHz with an error of +10dB/-6dB. The transmission line matrix method modelled the shielded cable which connected the drive to the motor and also took account of the architecture of the test rig. Only limited simulations were performed using the transmission line matrix model as it was found to be a very slow method and not an ideal solution to the problem. However the limited results obtained were comparable, to within 5%, to the results obtained using the finite element model.
Resumo:
The problem of structured noise suppression is addressed by i)modelling the subspaces hosting the components of the signal conveying the information and ii)applying a nonlin- ear non-extensive technique for effecting the right separation. Although the approach is applicable to all situations satisfying the hypothesis of the proposed framework, this work is motivated by a particular scenario, namely, the cancellation of low frequency noise in broadband seismic signals.
Resumo:
A novel all-fiber bipolar delay line filter is realized in a single-line cascaded high birefringence fiber structure. Optically coherent operation is achieved with suppression of interference noise. Complementary filter outputs give simultaneous lowpass and highpass responses.
Resumo:
Most contemporary models of spatial vision include a cross-oriented route to suppression (masking from a broadly tuned inhibitory pool), which is most potent at low spatial and high temporal frequencies (T. S. Meese & D. J. Holmes, 2007). The influence of this pathway can elevate orientation-masking functions without exciting the target mechanism, and because early psychophysical estimates of filter bandwidth did not accommodate this, it is likely that they have been overestimated for this corner of stimulus space. Here we show that a transient 40% contrast mask causes substantial binocular threshold elevation for a transient vertical target, and this declines from a mask orientation of 0° to about 40° (indicating tuning), and then more gently to 90°, where it remains at a factor of ∼4. We also confirm that cross-orientation masking is diminished or abolished at high spatial frequencies and for sustained temporal modulation. We fitted a simple model of pedestal masking and cross-orientation suppression (XOS) to our data and those of G. C. Phillips and H. R. Wilson (1984) and found the dependency of orientation bandwidth on spatial frequency to be much less than previously supposed. An extension of our linear spatial pooling model of contrast gain control and dilution masking (T. S. Meese & R. J. Summers, 2007) is also shown to be consistent with our results using filter bandwidths of ±20°. Both models include tightly and broadly tuned components of divisive suppression. More generally, because XOS and/or dilution masking can affect the shape of orientation-masking curves, we caution that variations in bandwidth estimates might reflect variations in processes that have nothing to do with filter bandwidth.
Resumo:
We measured the properties of interocular suppression in strabismic amblyopes and compared these to dichoptic masking in binocularly normal observers. We used a dichoptic version of the well-established probed-sinewave paradigm that measured sensitivity to a brief target stimulus (one of four letters to be discriminated) in the amblyopic eye at different times relative to a suppression-inducing mask in the fixing eye. This was done using both sinusoidal steady state and transient approaches. The suppression-inducing masks were either modulations of luminance or contrast (full field, just overlaying the target, or just surrounding the target). Our results were interpreted using a descriptive model that included contrast gain control and spatio-temporal filtering prior to excitatory binocular combination. The suppression we measured, other than in magnitude, was not fundamentally different from normal dichoptic masking: lowpass spatio-temporal properties with similar contributions from both surround and overlay suppression.
Resumo:
The performance of wireless networks is limited by multiple access interference (MAI) in the traditional communication approach where the interfered signals of the concurrent transmissions are treated as noise. In this paper, we treat the interfered signals from a new perspective on the basis of additive electromagnetic (EM) waves and propose a network coding based interference cancelation (NCIC) scheme. In the proposed scheme, adjacent nodes can transmit simultaneously with careful scheduling; therefore, network performance will not be limited by the MAI. Additionally we design a space segmentation method for general wireless ad hoc networks, which organizes network into clusters with regular shapes (e.g., square and hexagon) to reduce the number of relay nodes. The segmentation methodworks with the scheduling scheme and can help achieve better scalability and reduced complexity. We derive accurate analytic models for the probability of connectivity between two adjacent cluster heads which is important for successful information relay. We proved that with the proposed NCIC scheme, the transmission efficiency can be improved by at least 50% for general wireless networks as compared to the traditional interference avoidance schemes. Numeric results also show the space segmentation is feasible and effective. Finally we propose and discuss a method to implement the NCIC scheme in a practical orthogonal frequency division multiplexing (OFDM) communications networks. Copyright © 2009 John Wiley & Sons, Ltd.
Resumo:
Visual perception begins by dissecting the retinal image into millions of small patches for local analyses by local receptive fields. However, image structures extend well beyond these receptive fields and so further processes must be involved in sewing the image fragments back together to derive representations of higher order (more global) structures. To investigate the integration process, we also need to understand the opposite process of suppression. To investigate both processes together, we measured triplets of dipper functions for targets and pedestals involving interdigitated stimulus pairs (A, B). Previous work has shown that summation and suppression operate over the full contrast range for the domains of ocularity and space. Here, we extend that work to include orientation and time domains. Temporal stimuli were 15-Hz counter-phase sine-wave gratings, where A and B were the positive and negative phases of the oscillation, respectively. For orientation, we used orthogonally oriented contrast patches (A, B) whose sum was an isotropic difference of Gaussians. Results from all four domains could be understood within a common framework in which summation operates separately within the numerator and denominator of a contrast gain control equation. This simple arrangement of summation and counter-suppression achieves integration of various stimulus attributes without distorting the underlying contrast code.