20 resultados para Intelligent tutoring system
Resumo:
Automated negotiation systems can do better than human being in many aspects, and thus are applied into many domains ranging from business to computer science. However, little work about automating negotiation of complex business contract has been done so far although it is a kind of the most important negotiation in business. In order to address this issue, in this paper we developed an automated system for this kind of negotiation. This system is based on the principled negotiation theory, which is the most effective method of negotiation in the domain of business. The system is developed as a knowledge-based one because a negotiating agent in business has to be economically intelligent and capable of making effective decisions based on business experiences and knowledge. Finally, the validity of the developed system is shown in a real negotiation scenario where on behalf of human users, the system successfully performed a negotiation of a complex business contract between a wholesaler and a retailer. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Dimensional and form inspections are key to the manufacturing and assembly of products. Product verification can involve a number of different measuring instruments operated using their dedicated software. Typically, each of these instruments with their associated software is more suitable for the verification of a pre-specified quality characteristic of the product than others. The number of different systems and software applications to perform a complete measurement of products and assemblies within a manufacturing organisation is therefore expected to be large. This number becomes even larger as advances in measurement technologies are made. The idea of a universal software application for any instrument still appears to be only a theoretical possibility. A need for information integration is apparent. In this paper, a design of an information system to consistently manage (store, search, retrieve, search, secure) measurement results from various instruments and software applications is introduced. Two of the main ideas underlying the proposed system include abstracting structures and formats of measurement files from the data so that complexity and compatibility between different approaches to measurement data modelling is avoided. Secondly, the information within a file is enriched with meta-information to facilitate its consistent storage and retrieval. To demonstrate the designed information system, a web application is implemented. © Springer-Verlag Berlin Heidelberg 2010.
Resumo:
This paper details a method of determining the uncertainty of dimensional measurement for a three dimensional coordinate measurement machine. An experimental procedure was developed to compare three dimensional coordinate measurements with calibrated reference points. The reference standard used to calibrate these reference points was a fringe counting interferometer with the multilateration technique employed to establish three dimensional coordinates. This is an extension of the established technique of comparing measured lengths with calibrated lengths. Specifically a distributed coordinate measurement device was tested which consisted of a network of Rotary-Laser Automatic Theodolites (R-LATs), this system is known commercially as indoor GPS (iGPS). The method was found to be practical and able to establish that the expanded uncertainty of the basic iGPS system was approximately 1 mm at a 95% confidence level. © Springer-Verlag Berlin Heidelberg 2010.
Resumo:
Recommender system is a specific type of intelligent systems, which exploits historical user ratings on items and/or auxiliary information to make recommendations on items to the users. It plays a critical role in a wide range of online shopping, e-commercial services and social networking applications. Collaborative filtering (CF) is the most popular approaches used for recommender systems, but it suffers from complete cold start (CCS) problem where no rating record are available and incomplete cold start (ICS) problem where only a small number of rating records are available for some new items or users in the system. In this paper, we propose two recommendation models to solve the CCS and ICS problems for new items, which are based on a framework of tightly coupled CF approach and deep learning neural network. A specific deep neural network SADE is used to extract the content features of the items. The state of the art CF model, timeSVD++, which models and utilizes temporal dynamics of user preferences and item features, is modified to take the content features into prediction of ratings for cold start items. Extensive experiments on a large Netflix rating dataset of movies are performed, which show that our proposed recommendation models largely outperform the baseline models for rating prediction of cold start items. The two proposed recommendation models are also evaluated and compared on ICS items, and a flexible scheme of model retraining and switching is proposed to deal with the transition of items from cold start to non-cold start status. The experiment results on Netflix movie recommendation show the tight coupling of CF approach and deep learning neural network is feasible and very effective for cold start item recommendation. The design is general and can be applied to many other recommender systems for online shopping and social networking applications. The solution of cold start item problem can largely improve user experience and trust of recommender systems, and effectively promote cold start items.
Resumo:
Nearly a third of UK gas and electricity is used in homes, of which 80% is for space heating and hot water provision. Rising consumer bills, concerns about climate change and the surge in personal digital technology use has provoked the development of intelligent domestic heating controls. Whilst the need for having suitable control of the home heating system is essential for reducing domestic energy use, these heating controls rely on appropriate user interaction to achieve a saving and it is unclear whether these ‘smart’ heating controls enhance the use of domestic heating or reduce energy demand. This paper describes qualitative research undertaken with a small sample of UK householders to understand how people use new heating controls installed in their homes and what the requirements are for improved smart heating control design. The paper identifies, against Nielsen’s usability heuristics, the divergence between the householder’s use, understanding and expectations of the heating system and the actual design of the system. Digital and smart heating control systems should be designed to maximise usability so that they can be effectively used for efficient heating control by all users. The research highlights the need for development of new systems to readdress the needs of users and redefine the system requirements.