53 resultados para Instrumentation amplifier
Resumo:
The principle theme of this thesis is the advancement and expansion of ophthalmic research via the collaboration between professional Engineers and professional Optometrists. The aim has been to develop new and novel approaches and solutions to contemporary problems in the field. The work is sub divided into three areas of investigation; 1) High technology systems, 2) Modification of current systems to increase functionality, and 3) Development of smaller more portable and cost effective systems. High Technology Systems: A novel high speed Optical Coherence Tomography (OCT) system with integrated simultaneous high speed photography was developed achieving better operational speed than is currently available commercially. The mechanical design of the system featured a novel 8 axis alignment system. A full set of capture, analysis, and post processing software was developed providing custom analysis systems for ophthalmic OCT imaging, expanding the current capabilities of the technology. A large clinical trial was undertaken to test the dynamics of contact lens edge interaction with the cornea in-vivo. The interaction between lens edge design, lens base curvature, post insertion times and edge positions was investigated. A novel method for correction of optical distortion when assessing lens indentation was also demonstrated. Modification of Current Systems: A commercial autorefractor, the WAM-5500, was modified with the addition of extra hardware and a custom software and firmware solution to produce a system that was capable of measuring dynamic accommodative response to various stimuli in real time. A novel software package to control the data capture process was developed allowing real time monitoring of data by the practitioner, adding considerable functionality of the instrument further to the standard system. The device was used to assess the accommodative response differences between subjects who had worn UV blocking contact lens for 5 years, verses a control group that had not worn UV blocking lenses. While the standard static measurement of accommodation showed no differences between the two groups, it was determined that the UV blocking group did show better accommodative rise and fall times (faster), thus demonstrating the benefits of the modification of this commercially available instrumentation. Portable and Cost effective Systems: A new instrument was developed to expand the capability of the now defunct Keeler Tearscope. A device was developed that provided a similar capability in allowing observation of the reflected mires from the tear film surface, but with the added advantage of being able to record the observations. The device was tested comparatively with the tearscope and other tear film break-up techniques, demonstrating its potential. In Conclusion: This work has successfully demonstrated the advantages of interdisciplinary research between engineering and ophthalmic research has provided new and novel instrumented solutions as well as having added to the sum of scientific understanding in the ophthalmic field.
Resumo:
We report what we believe to be the first experimental study of inter-modal cross-gain modulation and associated transient effects as different spatial modes and wavelength channels are added and dropped within a two-mode amplifier for SDM transmission.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
We report less than 1-dB cross-talk penalty for 26 DWDM channels modulated at 43.7 Gb/s RZ-DPSK when amplified by a fiber optical parametric amplifier showing compatibility with high-capacity (> 1 Tb/s) communication systems. © 2010 Optical Society of America.
Resumo:
In this letter, we report the performance of a fiber optical parametric amplifier (OPA) when used as a source or intermediate node amplifier in a dense wavelength-division-multiplexed (DWDM) long-haul transmission testbed with 26 DWDM channels modulated at 43.7-Gb/s return-to-zero differential phase-shift keying. In both scenarios, we demonstrate similar performance to an erbium-doped fiber amplifier. This shows the OPAs compatibility with high-capacity (>1 Tb/s) long-haul communication systems.
Resumo:
We show that by optimizing the amplifier position in a two-stage dispersion map, the (dispersion-managed) soliton-soliton interaction can be reduced, enabling transmission of 10-Gbits-1 solitons over standard fiber over 16,000 km
Resumo:
We report high-capacity (> 1 Tb/s) amplification by a fiber optical parametric amplifier in different roles displaying compatibility and versatility in future WDM networks with phase-shift keying modulation format.
Resumo:
We demonstrate 40x43Gbit/s RZ-DQPSK transmission over 1000km of ultra-low-loss G.652 fibre with 250km amplifier spacing. Hybrid Raman-EDFA amplification with co- and contra-directional Raman pumping enables 27dB Raman gain per span and error-free post-FEC performance. ©2010 IEEE.
Resumo:
We perform optimisation of bi-directionally pumped dispersion compensating Raman amplifier modules. Optimal forward and backward pump powers for basic configurations using different commercially available fibers are presented for both single- and multi-channel systems. Optical signal-to-noise ratio improvement of up to 8 dB is achieved as a result of optimisation. © 2003 Published by Elsevier B.V.
Resumo:
A broadly tunable master-oscillator power-amplifier (MOPA) picosecond optical pulse source is demonstrated, consisting of an external cavity passively mode-locked laser diode with a tapered semiconductor amplifier. By employing chirped quantum-dot structures on both the oscillator's gain chip and amplifier, a wide tunability range between 1187 and 1283 nm is achieved. Under mode-locked operation, the highest output peak power of 4.39 W is achieved from the MOPA, corresponding to a peak power spectral density of 31.4 dBm/nm. © 1989-2012 IEEE.
Resumo:
A tunable master-oscillator power-amplifier (MOPA) picosecond optical pulse source using all chirped quantum dot (QD) structures is demonstrated (60nm tunability). Under fundamental mode-locked operation, the highest peak power of 4.39 W is achieved.
Resumo:
Nonlinear CW pump broadening over non-standard transmission fibre is used for the first time to achieve improved gain flatness in a single-pump broadband Raman amplifier. As an illustration of the benefits that can be obtained from this approach, a threefold increase in the bandwidth for 0.1 dB gain variation is reported when the broadened pump is used to produce 9.2 dB on-off gain over 25 km LEAF fibre. © 2005 Elsevier B.V. All rights reserved.
Resumo:
We propose and numerically demonstrate a new concept of fibre laser architecture supporting self-similar pulse evolution in the amplifier and nonlinear pulse spectral compression in the passive fibre. The latter process is beneficial for improving the power efficiency as it prevents strong spectral filtering from being highly dissipative. © 2012 OSA.
Resumo:
A synchronization scheme for a two-channel phase sensitive amplifier is implemented based on the injection-locking of single InP quantum-dash mode-locked laser. Error free performance with penalty <1 dB is demonstrated for both channels. © 2011 Optical Society of America.