59 resultados para Input-output data


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data envelopment analysis (DEA) is a methodology for measuring the relative efficiencies of a set of decision making units (DMUs) that use multiple inputs to produce multiple outputs. Crisp input and output data are fundamentally indispensable in conventional DEA. However, the observed values of the input and output data in real-world problems are sometimes imprecise or vague. Many researchers have proposed various fuzzy methods for dealing with the imprecise and ambiguous data in DEA. In this study, we provide a taxonomy and review of the fuzzy DEA methods. We present a classification scheme with four primary categories, namely, the tolerance approach, the a-level based approach, the fuzzy ranking approach and the possibility approach. We discuss each classification scheme and group the fuzzy DEA papers published in the literature over the past 20 years. To the best of our knowledge, this paper appears to be the only review and complete source of references on fuzzy DEA. © 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data envelopment analysis (DEA) is a methodology for measuring the relative efficiencies of a set of decision making units (DMUs) that use multiple inputs to produce multiple outputs. Crisp input and output data are fundamentally indispensable in conventional DEA. However, the observed values of the input and output data in real-world problems are sometimes imprecise or vague. Many researchers have proposed various fuzzy methods for dealing with the imprecise and ambiguous data in DEA. This chapter provides a taxonomy and review of the fuzzy DEA (FDEA) methods. We present a classification scheme with six categories, namely, the tolerance approach, the α-level based approach, the fuzzy ranking approach, the possibility approach, the fuzzy arithmetic, and the fuzzy random/type-2 fuzzy set. We discuss each classification scheme and group the FDEA papers published in the literature over the past 30 years. © 2014 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data envelopment analysis (DEA) has gained a wide range of applications in measuring comparative efficiency of decision making units (DMUs) with multiple incommensurate inputs and outputs. The standard DEA method requires that the status of all input and output variables be known exactly. However, in many real applications, the status of some measures is not clearly known as inputs or outputs. These measures are referred to as flexible measures. This paper proposes a flexible slacks-based measure (FSBM) of efficiency in which each flexible measure can play input role for some DMUs and output role for others to maximize the relative efficiency of the DMU under evaluation. Further, we will show that when an operational unit is efficient in a specific flexible measure, this measure can play both input and output roles for this unit. In this case, the optimal input/output designation for flexible measure is one that optimizes the efficiency of the artificial average unit. An application in assessing UK higher education institutions used to show the applicability of the proposed approach. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As we enter the 21st Century, technologies originally developed for defense purposes such as computers and satellite communications appear to have become a driving force behind economic growth in the United States. Paradoxically, almost all previous econometric models suggest that the largely defense-oriented federal industrial R&D funding that helped create these technologies had no discernible effect on U.S. industrial productivity growth. This paper addresses this paradox by stressing that defense procurement as well as federal R&D expenditures were targeted to a few narrowly defined manufacturing sub-sectors that produced high tech weaponry. Analysis employing data from the NBER Manufacturing Productivity Database and the BEA' s Input Output tables then demonstrates that defense procurement policies did have significant effects on the productivity performance of disaggregated manufacturing industries because of a process of procurement-driven technological change.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Using data from the UK Census of Production, including foreign ownership data, and information from UK industry input-output tables, this paper examines whether the intensity of transactions linkages between foreign and domestic firms affects productivity growth in domestic manufacturing industries. The implications of the findings for policies promoting linkages between multinational and domestic firms in the UK economy are outlined.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis is concerned with the study of a non-sequential identification technique, so that it may be applied to the identification of process plant mathematical models from process measurements with the greatest degree of accuracy and reliability. In order to study the accuracy of the technique under differing conditions, simple mathematical models were set up on a parallel hybrid. computer and these models identified from input/output measurements by a small on-line digital computer. Initially, the simulated models were identified on-line. However, this method of operation was found not suitable for a thorough study of the technique due to equipment limitations. Further analysis was carried out in a large off-line computer using data generated by the small on-line computer. Hence identification was not strictly on-line. Results of the work have shovm that the identification technique may be successfully applied in practice. An optimum sampling period is suggested, together with noise level limitations for maximum accuracy. A description of a double-effect evaporator is included in this thesis. It is proposed that the next stage in the work will be the identification of a mathematical model of this evaporator using the teclmique described.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper re-assesses three independently developed approaches that are aimed at solving the problem of zero-weights or non-zero slacks in Data Envelopment Analysis (DEA). The methods are weights restricted, non-radial and extended facet DEA models. Weights restricted DEA models are dual to envelopment DEA models with restrictions on the dual variables (DEA weights) aimed at avoiding zero values for those weights; non-radial DEA models are envelopment models which avoid non-zero slacks in the input-output constraints. Finally, extended facet DEA models recognize that only projections on facets of full dimension correspond to well defined rates of substitution/transformation between all inputs/outputs which in turn correspond to non-zero weights in the multiplier version of the DEA model. We demonstrate how these methods are equivalent, not only in their aim but also in the solutions they yield. In addition, we show that the aforementioned methods modify the production frontier by extending existing facets or creating unobserved facets. Further we propose a new approach that uses weight restrictions to extend existing facets. This approach has some advantages in computational terms, because extended facet models normally make use of mixed integer programming models, which are computationally demanding.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis provides an interoperable language for quantifying uncertainty using probability theory. A general introduction to interoperability and uncertainty is given, with particular emphasis on the geospatial domain. Existing interoperable standards used within the geospatial sciences are reviewed, including Geography Markup Language (GML), Observations and Measurements (O&M) and the Web Processing Service (WPS) specifications. The importance of uncertainty in geospatial data is identified and probability theory is examined as a mechanism for quantifying these uncertainties. The Uncertainty Markup Language (UncertML) is presented as a solution to the lack of an interoperable standard for quantifying uncertainty. UncertML is capable of describing uncertainty using statistics, probability distributions or a series of realisations. The capabilities of UncertML are demonstrated through a series of XML examples. This thesis then provides a series of example use cases where UncertML is integrated with existing standards in a variety of applications. The Sensor Observation Service - a service for querying and retrieving sensor-observed data - is extended to provide a standardised method for quantifying the inherent uncertainties in sensor observations. The INTAMAP project demonstrates how UncertML can be used to aid uncertainty propagation using a WPS by allowing UncertML as input and output data. The flexibility of UncertML is demonstrated with an extension to the GML geometry schemas to allow positional uncertainty to be quantified. Further applications and developments of UncertML are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The need for low bit-rate speech coding is the result of growing demand on the available radio bandwidth for mobile communications both for military purposes and for the public sector. To meet this growing demand it is required that the available bandwidth be utilized in the most economic way to accommodate more services. Two low bit-rate speech coders have been built and tested in this project. The two coders combine predictive coding with delta modulation, a property which enables them to achieve simultaneously the low bit-rate and good speech quality requirements. To enhance their efficiency, the predictor coefficients and the quantizer step size are updated periodically in each coder. This enables the coders to keep up with changes in the characteristics of the speech signal with time and with changes in the dynamic range of the speech waveform. However, the two coders differ in the method of updating their predictor coefficients. One updates the coefficients once every one hundred sampling periods and extracts the coefficients from input speech samples. This is known in this project as the Forward Adaptive Coder. Since the coefficients are extracted from input speech samples, these must be transmitted to the receiver to reconstruct the transmitted speech sample, thus adding to the transmission bit rate. The other updates its coefficients every sampling period, based on information of output data. This coder is known as the Backward Adaptive Coder. Results of subjective tests showed both coders to be reasonably robust to quantization noise. Both were graded quite good, with the Forward Adaptive performing slightly better, but with a slightly higher transmission bit rate for the same speech quality, than its Backward counterpart. The coders yielded acceptable speech quality of 9.6kbps for the Forward Adaptive and 8kbps for the Backward Adaptive.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Liquid-liquid extraction has long been known as a unit operation that plays an important role in industry. This process is well known for its complexity and sensitivity to operation conditions. This thesis presents an attempt to explore the dynamics and control of this process using a systematic approach and state of the art control system design techniques. The process was studied first experimentally under carefully selected. operation conditions, which resembles the ranges employed practically under stable and efficient conditions. Data were collected at steady state conditions using adequate sampling techniques for the dispersed and continuous phases as well as during the transients of the column with the aid of a computer-based online data logging system and online concentration analysis. A stagewise single stage backflow model was improved to mimic the dynamic operation of the column. The developed model accounts for the variation in hydrodynamics, mass transfer, and physical properties throughout the length of the column. End effects were treated by addition of stages at the column entrances. Two parameters were incorporated in the model namely; mass transfer weight factor to correct for the assumption of no mass transfer in the. settling zones at each stage and the backmixing coefficients to handle the axial dispersion phenomena encountered in the course of column operation. The parameters were estimated by minimizing the differences between the experimental and the model predicted concentration profiles at steady state conditions using non-linear optimisation technique. The estimated values were then correlated as functions of operating parameters and were incorporated in·the model equations. The model equations comprise a stiff differential~algebraic system. This system was solved using the GEAR ODE solver. The calculated concentration profiles were compared to those experimentally measured. A very good agreement of the two profiles was achieved within a percent relative error of ±2.S%. The developed rigorous dynamic model of the extraction column was used to derive linear time-invariant reduced-order models that relate the input variables (agitator speed, solvent feed flowrate and concentration, feed concentration and flowrate) to the output variables (raffinate concentration and extract concentration) using the asymptotic method of system identification. The reduced-order models were shown to be accurate in capturing the dynamic behaviour of the process with a maximum modelling prediction error of I %. The simplicity and accuracy of the derived reduced-order models allow for control system design and analysis of such complicated processes. The extraction column is a typical multivariable process with agitator speed and solvent feed flowrate considered as manipulative variables; raffinate concentration and extract concentration as controlled variables and the feeds concentration and feed flowrate as disturbance variables. The control system design of the extraction process was tackled as multi-loop decentralised SISO (Single Input Single Output) as well as centralised MIMO (Multi-Input Multi-Output) system using both conventional and model-based control techniques such as IMC (Internal Model Control) and MPC (Model Predictive Control). Control performance of each control scheme was. studied in terms of stability, speed of response, sensitivity to modelling errors (robustness), setpoint tracking capabilities and load rejection. For decentralised control, multiple loops were assigned to pair.each manipulated variable with each controlled variable according to the interaction analysis and other pairing criteria such as relative gain array (RGA), singular value analysis (SVD). Loops namely Rotor speed-Raffinate concentration and Solvent flowrate Extract concentration showed weak interaction. Multivariable MPC has shown more effective performance compared to other conventional techniques since it accounts for loops interaction, time delays, and input-output variables constraints.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

DEA literature continues apace but software has lagged behind. This session uses suitably selected data to present newly developed software which includes many of the most recent DEA models. The software enables the user to address a variety of issues not frequently found in existing DEA software such as: -Assessments under a variety of possible assumptions of returns to scale including NIRS and NDRS; -Scale elasticity computations; -Numerous Input/Output variables and truly unlimited number of assessment units (DMUs) -Panel data analysis -Analysis of categorical data (multiple categories) -Malmquist Index and its decompositions -Computations of Supper efficiency -Automated removal of super-efficient outliers under user-specified criteria; -Graphical presentation of results -Integrated statistical tests

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Data Envelopment Analysis (DEA) is a powerful analytical technique for measuring the relative efficiency of alternatives based on their inputs and outputs. The alternatives can be in the form of countries who attempt to enhance their productivity and environmental efficiencies concurrently. However, when desirable outputs such as productivity increases, undesirable outputs increase as well (e.g. carbon emissions), thus making the performance evaluation questionable. In addition, traditional environmental efficiency has been typically measured by crisp input and output (desirable and undesirable). However, the input and output data, such as CO2 emissions, in real-world evaluation problems are often imprecise or ambiguous. This paper proposes a DEA-based framework where the input and output data are characterized by symmetrical and asymmetrical fuzzy numbers. The proposed method allows the environmental evaluation to be assessed at different levels of certainty. The validity of the proposed model has been tested and its usefulness is illustrated using two numerical examples. An application of energy efficiency among 23 European Union (EU) member countries is further presented to show the applicability and efficacy of the proposed approach under asymmetric fuzzy numbers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Typical performance of low-density parity-check (LDPC) codes over a general binary-input output-symmetric memoryless channel is investigated using methods of statistical mechanics. The binary-input additive-white-Gaussian-noise channel and the binary-input Laplace channel are considered as specific channel noise models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a general methodology for estimating and incorporating uncertainty in the controller and forward models for noisy nonlinear control problems. Conditional distribution modeling in a neural network context is used to estimate uncertainty around the prediction of neural network outputs. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localize the possible control solutions to consider. A nonlinear multivariable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non Gaussian distributions of control signal as well as processes with hysteresis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the direct adaptive inverse control of nonlinear multivariable systems with different delays between every input-output pair. In direct adaptive inverse control, the inverse mapping is learned from examples of input-output pairs. This makes the obtained controller sub optimal, since the network may have to learn the response of the plant over a larger operational range than necessary. Moreover, in certain applications, the control problem can be redundant, implying that the inverse problem is ill posed. In this paper we propose a new algorithm which allows estimating and exploiting uncertainty in nonlinear multivariable control systems. This approach allows us to model strongly non-Gaussian distribution of control signals as well as processes with hysteresis. The proposed algorithm circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider.