23 resultados para Information literacy integration model
Resumo:
This Thesis addresses the problem of automated false-positive free detection of epileptic events by the fusion of information extracted from simultaneously recorded electro-encephalographic (EEG) and the electrocardiographic (ECG) time-series. The approach relies on a biomedical case for the coupling of the Brain and Heart systems through the central autonomic network during temporal lobe epileptic events: neurovegetative manifestations associated with temporal lobe epileptic events consist of alterations to the cardiac rhythm. From a neurophysiological perspective, epileptic episodes are characterised by a loss of complexity of the state of the brain. The description of arrhythmias, from a probabilistic perspective, observed during temporal lobe epileptic events and the description of the complexity of the state of the brain, from an information theory perspective, are integrated in a fusion-of-information framework towards temporal lobe epileptic seizure detection. The main contributions of the Thesis include the introduction of a biomedical case for the coupling of the Brain and Heart systems during temporal lobe epileptic seizures, partially reported in the clinical literature; the investigation of measures for the characterisation of ictal events from the EEG time series towards their integration in a fusion-of-knowledge framework; the probabilistic description of arrhythmias observed during temporal lobe epileptic events towards their integration in a fusion-of-knowledge framework; and the investigation of the different levels of the fusion-of-information architecture at which to perform the combination of information extracted from the EEG and ECG time-series. The performance of the method designed in the Thesis for the false-positive free automated detection of epileptic events achieved a false-positives rate of zero on the dataset of long-term recordings used in the Thesis.
Resumo:
Semantic Web Service, one of the most significant research areas within the Semantic Web vision, has attracted increasing attention from both the research community and industry. The Web Service Modelling Ontology (WSMO) has been proposed as an enabling framework for the total/partial automation of the tasks (e.g., discovery, selection, composition, mediation, execution, monitoring, etc.) involved in both intra- and inter-enterprise integration of Web services. To support the standardisation and tool support of WSMO, a formal model of the language is highly desirable. As several variants of WSMO have been proposed by the WSMO community, which are still under development, the syntax and semantics of WSMO should be formally defined to facilitate easy reuse and future development. In this paper, we present a formal Object-Z formal model of WSMO, where different aspects of the language have been precisely defined within one unified framework. This model not only provides a formal unambiguous model which can be used to develop tools and facilitate future development, but as demonstrated in this paper, can be used to identify and eliminate errors present in existing documentation.
Resumo:
In the field of mental health risk assessment, there is no standardisation between the data used in different systems. As a first step towards the possible interchange of data between assessment tools, an ontology has been constructed for a particular one, GRiST (Galatean Risk Screening Tool). We briefly introduce GRiST and its data structures, then describe the ontology and the benefits that have already been realised from the construction process. For example, the ontology has been used to check the consistency of the various trees used in the model. We then consider potential uses in integration of data from other sources. © 2009 IEEE.
Resumo:
This paper presents a new, dynamic feature representation method for high value parts consisting of complex and intersecting features. The method first extracts features from the CAD model of a complex part. Then the dynamic status of each feature is established between various operations to be carried out during the whole manufacturing process. Each manufacturing and verification operation can be planned and optimized using the real conditions of a feature, thus enhancing accuracy, traceability and process control. The dynamic feature representation is complementary to the design models used as underlining basis in current CAD/CAM and decision support systems. © 2012 CIRP.
Resumo:
eHabitat is a Web Processing Service (WPS) designed to compute the likelihood of finding ecosystems with equal properties. Inputs to the WPS, typically thematic geospatial "layers", can be discovered using standardised catalogues, and the outputs tailored to specific end user needs. Because these layers can range from geophysical data captured through remote sensing to socio-economical indicators, eHabitat is exposed to a broad range of different types and levels of uncertainties. Potentially chained to other services to perform ecological forecasting, for example, eHabitat would be an additional component further propagating uncertainties from a potentially long chain of model services. This integration of complex resources increases the challenges in dealing with uncertainty. For such a system, as envisaged by initiatives such as the "Model Web" from the Group on Earth Observations, to be used for policy or decision making, users must be provided with information on the quality of the outputs since all system components will be subject to uncertainty. UncertWeb will create the Uncertainty-Enabled Model Web by promoting interoperability between data and models with quantified uncertainty, building on existing open, international standards. It is the objective of this paper to illustrate a few key ideas behind UncertWeb using eHabitat to discuss the main types of uncertainties the WPS has to deal with and to present the benefits of the use of the UncertWeb framework.
Resumo:
Aircraft manufacturing industries are looking for solutions in order to increase their productivity. One of the solutions is to apply the metrology systems during the production and assembly processes. Metrology Process Model (MPM) (Maropoulos et al, 2007) has been introduced which emphasises metrology applications with assembly planning, manufacturing processes and product designing. Measurability analysis is part of the MPM and the aim of this analysis is to check the feasibility for measuring the designed large scale components. Measurability Analysis has been integrated in order to provide an efficient matching system. Metrology database is structured by developing the Metrology Classification Model. Furthermore, the feature-based selection model is also explained. By combining two classification models, a novel approach and selection processes for integrated measurability analysis system (MAS) are introduced and such integrated MAS could provide much more meaningful matching results for the operators. © Springer-Verlag Berlin Heidelberg 2010.
Resumo:
Softeam has over 20 years of experience providing UML-based modelling solutions, such as its Modelio modelling tool, and its Constellation enterprise model management and collaboration environment. Due to the increasing number and size of the models used by Softeam’s clients, Softeam joined the MONDO FP7 EU research project, which worked on solutions for these scalability challenges and produced the Hawk model indexer among other results. This paper presents the technical details and several case studies on the integration of Hawk into Softeam’s toolset. The first case study measured the performance of Hawk’s Modelio support using varying amounts of memory for the Neo4j backend. In another case study, Hawk was integrated into Constellation to provide scalable global querying of model repositories. Finally, the combination of Hawk and the Epsilon Generation Language was compared against Modelio for document generation: for the largest model, Hawk was two orders of magnitude faster.