23 resultados para Indicator Amino Acid Oxidation
Resumo:
Motivation: In any macromolecular polyprotic system - for example protein, DNA or RNA - the isoelectric point - commonly referred to as the pI - can be defined as the point of singularity in a titration curve, corresponding to the solution pH value at which the net overall surface charge - and thus the electrophoretic mobility - of the ampholyte sums to zero. Different modern analytical biochemistry and proteomics methods depend on the isoelectric point as a principal feature for protein and peptide characterization. Protein separation by isoelectric point is a critical part of 2-D gel electrophoresis, a key precursor of proteomics, where discrete spots can be digested in-gel, and proteins subsequently identified by analytical mass spectrometry. Peptide fractionation according to their pI is also widely used in current proteomics sample preparation procedures previous to the LC-MS/MS analysis. Therefore accurate theoretical prediction of pI would expedite such analysis. While such pI calculation is widely used, it remains largely untested, motivating our efforts to benchmark pI prediction methods. Results: Using data from the database PIP-DB and one publically available dataset as our reference gold standard, we have undertaken the benchmarking of pI calculation methods. We find that methods vary in their accuracy and are highly sensitive to the choice of basis set. The machine-learning algorithms, especially the SVM-based algorithm, showed a superior performance when studying peptide mixtures. In general, learning-based pI prediction methods (such as Cofactor, SVM and Branca) require a large training dataset and their resulting performance will strongly depend of the quality of that data. In contrast with Iterative methods, machine-learning algorithms have the advantage of being able to add new features to improve the accuracy of prediction. Contact: yperez@ebi.ac.uk Availability and Implementation: The software and data are freely available at https://github.com/ypriverol/pIR. Supplementary information: Supplementary data are available at Bioinformatics online.
Resumo:
The aim of this work was to investigate alternative safe and effective permeation enhancers for buccal peptide delivery. Basic amino acids improved insulin solubility in water while 200 and 400 µg/mL lysine significantly increased insulin solubility in HBSS. Permeability data showed a significant improvement in insulin permeation especially for 10 µg/mL of lysine (p < 0.05) and 10 µg/mL histidine (p < 0.001), 100 µg/mL of glutamic acid (p < 0.05) and 200 µg/mL of glutamic acid and aspartic acid (p < 0.001) without affecting cell integrity; in contrast to sodium deoxycholate which enhanced insulin permeability but was toxic to the cells. It was hypothesized that both amino acids and insulin were ionised at buccal cavity pH and able to form stable ion pairs which penetrated the cells as one entity; while possibly triggering amino acid nutrient transporters on cell surfaces. Evidence of these transport mechanisms was seen with reduction of insulin transport at suboptimal temperatures as well as with basal-to-apical vectoral transport, and confocal imaging of transcellular insulin transport. These results obtained for insulin is the first indication of a possible amino acid mediated transport of insulin via formation of insulin-amino acid neutral complexes by the ion pairing mechanism.
Resumo:
Atrophy of skeletal muscle reduces both the quality and quantity of life of patients with cancer cachexia. Loss of muscle mass is thought to arise from a reduction in protein synthesis combined with an enhanced rate of protein degradation, and few treatments are available to counteract this process. Eicosapentaenoic acid (EPA) has been shown to attenuate the enhanced protein degradation, but to have no effect on protein synthesis. This study examines the effect of EPA combined with a protein and amino-acid supplementation on protein synthesis and degradation in gastrocnemius muscle of mice bearing the cachexia-inducing MAC16 tumour. Muscles from cachectic mice showed an 80% reduction in protein synthesis and about a 50-fold increase in protein degradation compared with muscles from nontumour-bearing mice of the same age and weight. Treatment with EPA (1 g kg-1) daily reduced protein degradation by 88%, but had no effect on protein synthesis. Combination of EPA with casein (5.35 g kg-1) also had no effect on protein synthesis, but when combined with the amino acids leucine, arginine and methionine there was almost a doubling of protein synthesis. The addition of carbohydrate (10.7 g kg-1) to stimulate insulin release had no additional effect. The combination involving the amino acids produced almost a doubling of the ratio of protein synthesis to protein degradation in gastrocnemius muscle over that of EPA alone. No treatment had a significant effect on tumour growth rate, but the inclusion of amino acids had a more significant effect on weight loss induced by the MAC16 tumour than that of EPA alone. The results suggest that combination therapy of cancer cachexia involving both inhibition of the enhanced protein degradation and stimulation of the reduced protein synthesis may be more effective than either treatment alone. © 2004 Cancer Research UK.
Resumo:
Introduction – Why do we need ‘biomarkers? Biomarkers of protein oxidation Introduction Major issues/questions Protein carbonyl biomarkers Biochemistry Methods of measurement Storage, stability and limitations in use Protein thiol biomarkers Biochemistry Methods of measurement Storage, stability and limitations on use Aliphatic amino acid biomarkers Biochemistry Methods of measurement Storage, stability and limitations on use Oxidised Tryptophan Biomarkers Biochemistry Method of measurement Storage, stability and limitations on use Oxidised tyrosine biomarkers Biochemistry Methods of measurement Storage, stability and limitations on use Formation of neoepitopes on oxidised proteins Validation of assays for protein oxidation biomarkers Relationship of protein oxidation to disease Modulation of protein oxidation biomarkers by antioxidants Future perspectives Introduction to lipid peroxidation biomarkers Introduction: biochemistry of lipid peroxidation Malondialdehyde Methods of measurement Storage, stability and limitations on use Conjugated dienes Method of measurement Storage, stability and limitations of use LDL lag phase Method of measurement Storage, stability and limitations of use Hydrocarbon gases Biochemistry Method of measurement Storage, stability and limitations on use Lipofuscin Biochemistry Method of measurement Storage, stability and limitation on use Lipid peroxides Biochemistry Method of measurement Storage, stability and limitations on use Isoprostanes Biochemistry Method of measurement Storage, stability and limitations on use Possible new biomarkers of lipid oxidation Relationship of lipid peroxidation to disease Modulation of lipid peroxidation biomarkers by antioxidants Functional consequences of lipid peroxidation Contribution of dietary intake to lipid peroxidation products Biomarkers of DNA oxidation Introduction Confounding factors Units and terminology Nuclear and mitochondrial DNA damage Lymphocytes as surrogate tissues Measurement of DNA damage with the comet assay Practical details Storage, stability, and limitations of the assay Measurement of DNA base oxidation by HPLC Practical details Storage, stability and limitations of the method Measurement of DNA base oxidation by GC–MS Biochemistry of 8-oxoguanine, adenine and fapy derivatives Methods of measurement Storage, stability and limitations of the method Analysis of guanine oxidation products in urine Method of measurement Limitations and criticisms Immunochemical methods Methods of measurement Storage, stability, and limitations of the assay 32P post-labelling Method of measurement Limitations and criticisms Validation of assays for DNA oxidation Oxo-dGuo in lymphocyte DNA Urinary measurements DNA–aldehyde adducts Biochemistry Method of measurement Products of reactive nitrogen species Endpoints arising from oxidative DNA damage Mutations Chromosome aberrations Micronuclei Site-specific DNA damage Relationship of DNA oxidation to disease Modulation of DNA oxidation biomarkers by antioxidants Direct and indirect effects of oxidative stress: measures of total oxidant/antioxidant levels Visualisation of cellular oxidants Biochemistry: histochemical detection of ROS Method of measurement Limitations, storage and stability Measurement of hydrogen peroxide Biochemistry Methods of measurement Storage, stability and limitations on use Measurement of the ratio of antioxidant/oxidised antioxidant Biochemistry Method of measurement Storage, stability and limitations on use Total antioxidant capacity Biochemistry Terminology Methods of measurement Storage, stability and limitations on use Validation of assays for direct oxidant and antioxidant biomarkers Relationship of oxidant/antioxidant measurement to disease Modulation of oxidant/antioxidant biomarkers by dietary antioxidants Induction of genes in response to oxidative stress Background Measurement of antioxidant responsive genes and proteins Effects of antioxidant intake on the activity of antioxidant enzymes
Resumo:
Despite recent advances in the formulation of lyophilised rapid disintegrating tablets (RDTs), the inclusion of matrix supporting/disintegration enhancing agents has been limited to the use of saccharides and polyols. In this study, the feasibility of using amino acids as matrix forming agents in lyophilised RDTs was investigated. Twelve amino acids were chosen (alanine, arginine, threonine, glycine, cysteine, serine, histidine, lysine, valine, asparagine, glutamine and proline), and the suitability for freeze drying, mechanical properties and disintegration time after inclusion of the amino acids at varied concentration were studied. In addition, the porosity of the RDTs and wettability profile of the amino acids were investigated to understand the mechanisms of disintegration. The results suggest the suitability of these amino acids for the lyophilisation regime, as they displayed satisfactory safety margin between the glass transition and shelf temperature (-40 degrees C), except proline-based formulations. Moreover, the crystallisation behavior of alanine, glycine, cysteine and serine at high concentration increased the stability of the formulation. The characterisation of the RDTs suggests that high concentration of the amino acids is required to enhance the mechanical properties, whereas only optimum concentrations promote the disintegration. Moreover, wetting time of the amino acid and porosity of the tablet are the two factors that control the disintegration of RDTs.
Resumo:
Protein oxidation is thought to contribute to a number of inflammatory diseases, hence the development of sensitive and specific analytical techniques to detect oxidative PTMs (oxPTMs) in biological samples is highly desirable. Precursor ion scanning for fragment ions of oxidized amino acid residues was investigated as a label-free MS approach to mapping specific oxPTMs in a complex mixture of proteins. Using HOCl-oxidized lysozyme as a model system, it was found that the immonium ions of oxidized tyrosine and tryptophan formed in MS(2) analysis could not be used as diagnostic ions, owing to the occurrence of isobaric fragment ions from unmodified peptides. Using a double quadrupole linear ion trap mass spectrometer, precursor ion scanning was combined with detection of MS(3) fragment ions from the immonium ions and collisionally-activated decomposition peptide sequencing to achieve selectivity for the oxPTMs. For chlorotyrosine, the immonium ion at 170.1 m/z fragmented to yield diagnostic ions at 153.1, 134.1, and 125.1 m/z, and the hydroxytyrosine immonium ion at 152.1 m/z gave diagnostic ions at 135.1 and 107.1 m/z. Selective MS(3) fragment ions were also identified for 2-hydroxytryptophan and 5-hydroxytryptophan. The method was used successfully to map these oxPTMs in a mixture of nine proteins that had been treated with HOCl, thereby demonstrating its potential for application to complex biological samples.
Resumo:
Multidrug resistance protein MRP1 mediates the ATP-dependent efflux of many chemotherapeutic agents and organic anions. MRP1 has two nucleotide binding sites (NBSs) and three membrane spanning domains (MSDs) containing 17 transmembrane helices linked by extracellular and cytoplasmic loops (CL). Homology models suggest that CL7 (amino acids 1141-1195) is in a position where it could participate in signaling between the MSDs and NBSs during the transport process. We have individually replaced eight charged residues in CL7 with Ala, and in some cases, an amino acid with the same charge, and then investigated the effects on MRP1 expression, transport activity, and nucleotide and substrate interactions. A triple mutant in which Glu(1169), Glu(1170), and Glu(1172) were all replaced with Ala was also examined. The properties of R1173A and E1184A were comparable with those of wild-type MRP1, whereas the remaining mutants were either poorly expressed (R1166A, D1183A) or exhibited reduced transport of one or more organic anions (E1144A, D1179A, K1181A, (1169)AAQA). Same charge mutant D1183E was also not expressed, whereas expression and activity of R1166K were similar to wild-type MRP1. The moderate substrate-selective changes in transport activity displayed by mutants E1144A, D1179A, K1181A, and (1169)AAQA were accompanied by changes in orthovanadate-induced trapping of [alpha-(32)P]azidoADP by NBS2 indicating changes in ATP hydrolysis or release of ADP. In the case of E1144A, estradiol glucuronide no longer inhibited trapping of azidoADP. Together, our results demonstrate the extreme sensitivity of CL7 to mutation, consistent with its critical and complex dual role in both the proper folding and transport activity of MRP1.
Resumo:
Cysteine is a thiol containing amino acid that readily undergoes oxidation by reactive oxygen species (ROS) to form sulphenic (R-SOH) sulphinic (RSO2H) and sulphonic (RSO3H) acids. Thiol modifications of cysteine have been implicated as modulators of cellular processes and represent significant biological modifications that occur during oxidative stress and cell signalling. However, the different oxidation states are difficult to monitor in a physiological setting due to the limited availability of experimental tools. Therefore it is of interest to synthesise and use a chemical probe that selectively recognises the reversible oxidation state of cysteine sulphenic acid to understand more about oxidative signalling. The aim of this thesis was to investigate a synthetic approach for novel fluorescent probe synthesis, for the specific detection of cysteine sulphenic acids by fluorescence spectroscopy and confocal microscopy. N-[2-(Anthracen-2-ylamino)-2-oxoethyl]-3,5-dioxocyclohexanecarboxamide was synthesised in a multistep synthesis and characterised by nuclear magnetic resonance spectroscopy. The optimisation of conditions needed for sulphenic acid formation in a purified protein using human serum albumin (HSA) and the commercially available biotin tagged probe 3-(2,4-dioxocyclohexyl)propyl-5-((3aR,6S,6aS)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-6-yl)pentanoate (DCP-Bio1) were identified. This approach was extended to detect sulphenic acids in Jurkat T cells and CD4+ T cells pre- and post-stimulus. Buthionine sulfoximine (BSO) was used to manipulate the endogenous antioxidant glutathione (GSH) in human CD4+ T cells. Then the surface protein thiol levels and sulphenic acid formation was examined. T cells were also activated by the lectin phytohaemagglutinin-L (PHA-L) and formation of sulphenic acid was investigated using SDS-PAGE, western blotting and confocal microscopy. Resting Jurkat cells have two prominent protein bands that have sulphenic acid modifications whereas resting CD4+ T cells have an additional band present. When cells were treated with BSO the number of bands increased whereas activation reduced the number of proteins that were modified. The identities of the protein bands containing sulphenic acids were explored by mass spectrometry. Cysteine oxidation was observed in redox, metabolic and cytoskeletal proteins. In summary, a novel fluorescent probe for detection of cysteine sulphenic acids has been synthesised alongside a model system that introduces cysteine sulphenic acid in primary T cells. This probe has potential application in the subcellular localisation of cysteine oxidation during T cell signalling.