24 resultados para Hydrologic connectivity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emotional liability and mood dysregulation characterize bipolar disorder (BD), yet no study has examined effective connectivity between parahippocampal gyrus and prefrontal cortical regions in ventromedial and dorsal/lateral neural systems subserving mood regulation in BD. Participants comprised 46 individuals (age range: 18-56 years): 21 with a DSM-IV diagnosis of BD, type I currently remitted; and 25 age- and gender-matched healthy controls (HC). Participants performed an event-related functional magnetic resonance imaging paradigm, viewing mild and intense happy and neutral faces. We employed dynamic causal modeling (DCM) to identify significant alterations in effective connectivity between BD and HC. Bayes model selection was used to determine the best model. The right parahippocampal gyrus (PHG) and right subgenual cingulate gyrus (sgCG) were included as representative regions of the ventromedial neural system. The right dorsolateral prefrontal cortex (DLPFC) region was included as representative of the dorsal/lateral neural system. Right PHG-sgCG effective connectivity was significantly greater in BD than HC, reflecting more rapid, forward PHG-sgCG signaling in BD than HC. There was no between-group difference in sgCG-DLPFC effective connectivity. In BD, abnormally increased right PHG-sgCG effective connectivity and reduced right PHG activity to emotional stimuli suggest a dysfunctional ventromedial neural system implicated in early stimulus appraisal, encoding and automatic regulation of emotion that may represent a pathophysiological functional neural mechanism for mood dysregulation in BD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuroimaging studies have consistently shown that working memory (WM) tasks engage a distributed neural network that primarily includes the dorsolateral prefrontal cortex, the parietal cortex, and the anterior cingulate cortex. The current challenge is to provide a mechanistic account of the changes observed in regional activity. To achieve this, we characterized neuroplastic responses in effective connectivity between these regions at increasing WM loads using dynamic causal modeling of functional magnetic resonance imaging data obtained from healthy individuals during a verbal n-back task. Our data demonstrate that increasing memory load was associated with (a) right-hemisphere dominance, (b) increasing forward (i.e., posterior to anterior) effective connectivity within the WM network, and (c) reduction in individual variability in WM network architecture resulting in the right-hemisphere forward model reaching an exceedance probability of 99% in the most demanding condition. Our results provide direct empirical support that task difficulty, in our case WM load, is a significant moderator of short-term plasticity, complementing existing theories of task-related reduction in variability in neural networks. Hum Brain Mapp, 2013. © 2013 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IMPORTANCE Genome-wide association studies (GWASs) indicate that single-nucleotide polymorphisms in the CACNA1C and ANK3 genes increase the risk for bipolar disorder (BD). The genes influence neuronal firing by modulating calcium and sodium channel functions, respectively. Both genes modulate ?-aminobutyric acid-transmitting interneuron function and can thus affect brain regional activation and interregional connectivity. OBJECTIVE To determine whether the genetic risk for BD associated with 2 GWAS-supported risk single-nucleotide polymorphisms at CACNA1C rs1006737 and ANK3 rs10994336 is mediated through changes in regional activation and interregional connectivity of the facial affect-processing network. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional functional magnetic resonance imaging study at a research institute of 41 euthymic patients with BD and 46 healthy participants, all of British white descent. MAIN OUTCOMES AND MEASURES Blood oxygen level-dependent signal and effective connectivity measures during the facial affect-processing task. RESULTS In healthy carriers, both genetic risk variants were independently associated with increased regional engagement throughout the facial affect-processing network and increased effective connectivity between the visual and ventral prefrontal cortical regions. In contrast, BD carriers of either genetic risk variant exhibited pronounced reduction in ventral prefrontal cortical activation and visual-prefrontal effective connectivity. CONCLUSIONS AND RELEVANCE Our data demonstrate that the effect of CACNA1C rs1006737 and ANK3 rs10994336 (or genetic variants in linkage disequilibrium) on the brain converges on the neural circuitry involved in affect processing and provides a mechanism linking BD to genome-wide genetic risk variants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Altered state theories of hypnosis posit that a qualitatively distinct state of mental processing, which emerges in those with high hypnotic susceptibility following a hypnotic induction, enables the generation of anomalous experiences in response to specific hypnotic suggestions. If so then such a state should be observable as a discrete pattern of changes to functional connectivity (shared information) between brain regions following a hypnotic induction in high but not low hypnotically susceptible participants. Twenty-eight channel EEG was recorded from 12 high susceptible (highs) and 11 low susceptible (lows) participants with their eyes closed prior to and following a standard hypnotic induction. The EEG was used to provide a measure of functional connectivity using both coherence (COH) and the imaginary component of coherence (iCOH), which is insensitive to the effects of volume conduction. COH and iCOH were calculated between all electrode pairs for the frequency bands: delta (0.1-3.9 Hz), theta (4-7.9 Hz) alpha (8-12.9 Hz), beta1 (13-19.9 Hz), beta2 (20-29.9 Hz) and gamma (30-45 Hz). The results showed that there was an increase in theta iCOH from the pre-hypnosis to hypnosis condition in highs but not lows with a large proportion of significant links being focused on a central-parietal hub. There was also a decrease in beta1 iCOH from the pre-hypnosis to hypnosis condition with a focus on a fronto-central and an occipital hub that was greater in high compared to low susceptibles. There were no significant differences for COH or for spectral band amplitude in any frequency band. The results are interpreted as indicating that the hypnotic induction elicited a qualitative change in the organization of specific control systems within the brain for high as compared to low susceptible participants. This change in the functional organization of neural networks is a plausible indicator of the much theorized "hypnotic-state". © 2014 Jamieson and Burgess.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined two subjectively distinct memory states that are elicited during recognition memory in humans and compared them in terms of the gamma oscillations (20–60 Hz) in the electroencepahalogram (EEG) that they induced. These subjective states, ‘recollection’ and ‘familiarity’ both entail correct recognition but one involves a clear and conscious recollection of the event including memory for contextual detail whilst the other involves a sense of familiarity without clear recollection. Here we show that during a verbal recognition memory test, the subjective experience of ‘recollection’ induced higher amplitude gamma oscillations than the subjective experience of ‘familiarity’ in the time period 300–500 ms after stimulus presentation. Recollection, but not familiarity, was also associated with greater functional connectivity in the gamma frequency range between frontal and parietal sites. Furthermore, the magnitude of the gamma functional connectivity varied over time and was modulated at 3 Hz. Previous studies in animals have shown local theta frequency modulation (3–7 Hz) of gamma-oscillations but this is the first time that a similar effect has been reported in the human EEG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autism is a developmental disorder that is currently defined in terms of a triad of impairments in social interaction, communication, and behavioural flexibility. Psychological models have focussed on deficits in high level social and cognitive processes, such as ‘weak central coherence’ and deficits in ‘theory of mind’. Converging evidence from different fields of neuroscience research indicates that the underlying neural dysfunction is associated with atypical patterns of cortical connectivity (Rippon et al., 2007). This arises very early in development and results in sensory, perceptual and cognitive deficits at a much earlier and more fundamental level than previously suggested, but with cascading effects on higher level psychological and social processes. Earlier research in this sphere has focussed mainly on patterns of underconnectivity in distributed cortical networks underpinning process such as language and executive function. (Just et al., 2007). Such research mainly utilises imaging techniques with high spatial resolution. This paper focuses on evidence associated with local over-connectivity, evident in more low level and transitory processes and hence more easily measurable with techniques with high temporal resolution, such as MEG and EEG. Results are described which provide evidence of such local over-connectivity, characterised by atypical results in the gamma frequency range (Brown et al., 2005) together with discussions about the future directions of such research and its implications for remediation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the increasing body of evidence supporting the hypothesis of schizophrenia as a disconnection syndrome, studies of resting-state EEG Source Functional Connectivity (EEG-SFC) in people affected by schizophrenia are sparse. The aim of the present study was to investigate resting-state EEG-SFC in 77 stable, medicated patients with schizophrenia (SCZ) compared to 78 healthy volunteers (HV). In order to study the effect of illness duration, SCZ were divided in those with a short duration of disease (SDD; n = 25) and those with a long duration of disease (LDD; n = 52). Resting-state EEG recordings in eyes closed condition were analyzed and lagged phase synchronization (LPS) indices were calculated for each ROI pair in the source-space EEG data. In delta and theta bands, SCZ had greater EEG-SFC than HV; a higher theta band connectivity in frontal regions was observed in LDD compared with SDD. In the alpha band, SCZ showed lower frontal EEG-SFC compared with HV whereas no differences were found between LDD and SDD. In the beta1 band, SCZ had greater EEG-SFC compared with HVs and in the beta2 band, LDD presented lower frontal and parieto-temporal EEG-SFC compared with HV. In the gamma band, SDD had greater connectivity values compared with LDD and HV. This study suggests that resting state brain network connectivity is abnormally organized in schizophrenia, with different patterns for the different EEG frequency components and that EEG can be a powerful tool to further elucidate the complexity of such disordered connectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mobile communication and networking infrastructures play an important role in the development of smart cities, to support real-time information exchange and management required in modern urbanization. Mobile WiFi devices that help offloading data traffic from the macro-cell base station and serve the end users within a closer range can significantly improve the connectivity of wireless communications between essential components including infrastructural and human devices in a city. However, this offloading function through interworking between LTE and WiFi systems will change the pattern of resource distributions operated by the base station. In this paper, a resource allocation scheme is proposed to ensure stable service coverage and end-user quality of experience (QoE) when offloading takes place in a macro-cell environment. In this scheme, a rate redistribution algorithm is derived to form a parametric scheduler to meet the required levels of efficiency and fairness, guided by a no-reference quality assessment metric. We show that the performance of resource allocation can be regulated by this scheduler without affecting the service coverage offered by the WLAN access point. The performances of different interworking scenarios and macro-cell scheduling policies are also compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although atypical social behaviour remains a key characterisation of ASD, the presence ofsensory and perceptual abnormalities has been given a more central role in recentclassification changes. An understanding of the origins of such aberrations could thus prove afruitful focus for ASD research. Early neurocognitive models of ASD suggested that thestudy of high frequency activity in the brain as a measure of cortical connectivity mightprovide the key to understanding the neural correlates of sensory and perceptual deviations inASD. As our review shows, the findings from subsequent research have been inconsistent,with a lack of agreement about the nature of any high frequency disturbances in ASD brains.Based on the application of new techniques using more sophisticated measures of brainsynchronisation, direction of information flow, and invoking the coupling between high andlow frequency bands, we propose a framework which could reconcile apparently conflictingfindings in this area and would be consistent both with emerging neurocognitive models ofautism and with the heterogeneity of the condition.