19 resultados para Human-body
Resumo:
This article explores powerful, constraining representations of encounters between digital technologies and the bodies of students and teachers, using corpus-based Critical Discourse Analysis (CDA). It discusses examples from a corpus of UK Higher Education (HE) policy documents, and considers how confronting such documents may strengthen arguments from educators against narrow representations of an automatically enhanced learning. Examples reveal that a promise of enhanced ‘student experience’ through information and communication technologies internalizes the ideological constructs of technology and policy makers, to reinforce a primary logic of exchange value. The identified dominant discursive patterns are closely linked to the Californian ideology. By exposing these texts, they provide a form of ‘linguistic resistance’ for educators to disrupt powerful processes that serve the interests of a neoliberal social imaginary. To mine this current crisis of education, the authors introduce productive links between a Networked Learning approach and a posthumanist perspective. The Networked Learning approach emphasises conscious choices between political alternatives, which in turn could help us reconsider ways we write about digital technologies in policy. Then, based on the works of Haraway, Hayles, and Wark, a posthumanist perspective places human digital learning encounters at the juncture of non-humans and politics. Connections between the Networked Learning approach and the posthumanist perspective are necessary in order to replace a discourse of (mis)representations with a more performative view towards the digital human body, which then becomes situated at the centre of teaching and learning. In practice, however, establishing these connections is much more complex than resorting to the typically straightforward common sense discourse encountered in the Critical Discourse Analysis, and this may yet limit practical applications of this research in policy making.
Resumo:
This thesis presents the study of a two-degree-of-freedom (2 DOF) nonlinear system consisting of two grounded linear oscillators coupled to two separate light weight nonlinear energy sinks of an essentially nonlinear stiffness. In this thesis, Targeted Energy Transfer (TET) and NES concept are introduced. Previous studies and research of Energy pumping and NES are presented. The characters in nonlinear energy pumping have been introduced at the start of the thesis. For the aim to design the application of a tremor reduction assessment device, the knowledge of tremor reduction has also been mentioned. Two main parties have been presented in the research: dynamical theoretic method of nonlinear energy pumping study and experiments of nonlinear vibration reduction model. In this thesis, nonlinear energy sink (NES) has been studied and used as a core attachment for the research. A new theoretic method of nonlinear vibration reduction which with two NESs has been attached to a primary system has been designed and tested with the technology of targeted energy transfer. Series connection and parallel connection structure systems have been designed to run the tests. Genetic algorithm has been used and presented in the thesis for searching the fit components. One more experiment has been tested with the final components. The results have been compared to find out most efficiency structure and components for the theoretic model. A tremor reduction experiment has been designed and presented in the thesis. The experiment is for designing an application for reducing human body tremor. By using the theoretic method earlier, the experiment has been designed and tested with a tremor reduction model. The experiment includes several tests, one single NES attached system and two NESs attached systems with different structures. The results of theoretic models and experiment models have been compared. The discussion has been made in the end. At the end of the thesis, some further work has been considered to designing the device of the tremor reduction.
Resumo:
Ageing is a natural phenomenon of the human lifecycle, yet it is still not understood what causes the deterioration of the human body near the end of the lifespan. One popular theory is the Free Radical Theory of Ageing, which proposes that oxidative damage to biomolecules causes ageing of tissues. The ageing population is affected by many chronic diseases. This study focused on sarcopenia (muscle loss in ageing) and obesity as two models for comparison of oxidative damage in muscle proteins in mice. The aim of the study was to develop advanced mass spectrometry methods to detect specific oxidative modifications to mouse muscle proteins, including oxidation, nitration, chlorination, and carbonyl group formation, but western blotting was also used to provide complementary information on the oxidative state of proteins from aged and obese muscle. Mass spectrometry proved to be a powerful tool, enabling identification of the types of modifications present, the sites at which they were present and percentage of the peptide populations that were modified. Targeted and semi-targeted mass spectrometry methods were optimised for the identification and quantitation of the oxidised residues in muscle proteins. The development of the quantitative methods enabled comparisons of mass spectrometry instruments. Both the Time of Flight and QTRAP systems showed advantages of using the different mass analysers to quantify oxidative modifications. Several oxidised residues were characterised and quantified in both the obese and sarcopenic models, and higher levels of oxidation were found compared to their control counterparts. Residues found to be oxidised were oxidation of proline, tyrosine and tryptophan, dioxidation of methionine, allysine and nitration of tyrosine. However quantification was performed on methionine dioxidation and cysteine trioxidation containing residues in SERCA. The combination of measuring residue susceptibility and functional studies could contribute to understanding the overall role of oxidation in ageing and obesity.
Resumo:
In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.