47 resultados para Human Umbilical Vein Endothelial Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) and the sphingolipid ceramide are each partly responsible for the intracellular signal transduction of a variety of physiological, pharmacological or environmental agents. Furthermore, the enhanced production of many of these agents, that utilise ROS and ceramide as signalling intermediates, is associated with the aetiologies of several vascular diseases (e.g. atherosclerosis) or disorders of inflammatory origin (e.g. rheumatoid arthritis; RA). Excessive monocyte recruitment and uncontrolled T cell activation are both strongly implicated in the chronic inflammatory responses that are associated with these pathologies. Therefore the aims of this thesis are (1) to further elucidate the cellular responses to modulations in intracellular ceramide/ROS levels in monocytes and T cells, in order to help resolve the mechanisms of progression of these diseases and (2) to examine both existing agents (methotrexate) and novel targets for possible therapeutic manipulation. Utilising synthetic, short chain ceramide to mimic the cellular responses to fluctuations in natural endogenous ceramide or, stimulation of CD95 to induce ceramide formation, it is described here that ceramide targets and manipulates two discrete sites responsible for ROS generation, preceding the cellular responses of growth arrest in U937 monocytes and apoptosis in Jurkat T-cells. In both cell types, transient elevations in mitochondrial ROS generation were observed. However, the prominent redox altering effects appear to be the ceramide-mediated reduction in cytosolic peroxide, the magnitude of which dictates in part the cellular response in U937 monocytes, Jurkat T-cells and primary human peripheral blood resting or PHA-activated T-cells in vitro. The application of synthetic ceramides to U937 monocytes for short (2 hours) or long (16 hours) treatment periods reduced the membrane expression of proteins associated with cell-cell interaction. Furthermore, ceramide treated U937 monocytes demonstrated reduced adhesion to 5 or 24 hour LPS activated human umbilical vein endothelial cells (HUVEC) but not resting HUVEC. Consequently it is hypothesised that the targeted treatment of monocytes from patients with cardiovascular diseases with short chain synthetic ceramide may reduce disease progression. Herein, the anti-inflammatory and immunosuppressant drug, methotrexate, is described to require ROS production for the induction of cytostasis or cytotoxicity in U937 monocytes and Jurkat T-cells respectively. Further, ROS are critical for methotrexate to abrogate monocyte interaction with activated HUVEC in vitro. The histological feature of RA of enhanced infiltration, survivability and hyporesponsiveness of T-cells within the diseased synovium has been suggested to arise from aberrant signalling. No difference in the concentrations of endogenous T-cell ceramide, the related lipid diacylglycerol (DAG) and cytosolic peroxide ex vivo was observed. TCR activation following PHA exposure in vitro for 72 hours did not induced maintained perturbations in DAG or ceramide in T-cells from RA patients or healthy individuals. However, T-cells from RA patients failed to upregulate cytosolic peroxide in response to PHA, unlike those from normals, despite expressing identical levels of the activation marker CD25. This inability to upregulate cytosolic peroxide may contribute to the T-cell pathology associated with RA by affecting the signalling capacity of redox sensitive biomolecules. These data highlight the importance of two distinctive cellular pools of ROS in mediating complex biological events associated with inflammatory disease and suggest that modulation of cellular ceramides represents a novel therapeutic strategy to minimise monocyte recruitment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Human islet transplantation would offer a less invasive and more physiological alternative than whole pancreas transplantation and insulin injections respectively for the treatment of diabetes mellitus if islet graft survival can be improved. Initial recipient post-transplant insulin independence declines to <10% after 5 years. Factors contributing to graft failure include enzymatic disruption of the islet microenvironment during isolation, diabetogenic effects of immunosuppressants and metabolic stress resulting from slow revascularisation. Aims: To investigate the effect of co-culture in both static (SC) and rotational culture (RC) of BRINBDII beta-cells (Dl1) and human umbilical vein endothelial cells (HUVEC) on Dl1 insulin secretion; and the effect of a thiazolidinedione (TZD) on DII function and HUVEC proliferation. To assess the effect of culture media, SC, RC and a TZD on human islet morphology, insulin secretion and VEGF production. To initiate in vivo protocol development for assessment of revascularisation of human islet grafts. Methods: D11 cells were cultured +/-TZD and co-cultured with HUVEC +/-TZD in SC and RC. Dl1 insulin secretion was induced by static incubation with low glucose (1.67mM), high glucose (l6.7mM: and high glucose with 10mM theophylline (G+T) and determined by ELISA. HUVEC were cultured +/-TZD in SC and RC and proliferation was assessed by ATP luminescence assay and VEGF ELISA. D II and HUVEC morphology was determined by immunocytochemistry. Human islets were cultured in SC and RC in various media +/-TZD. Insulin secretion was determined as above and VEGF production by fluorescence immunocytochemistry (FI) and ELISA. Revascularisation of islet grafts was assessed by vascular corrosion cast and FI. Results: Dll cultures showed significantly increased insulin secretion in response to 16.7mM and G+T over basal; this was enhanced by RC and further improved by adding 10mM TZD. Untreated Dll/HUVEC co-cultures displayed significantly increased insulin secretion in response to 16.7mM and G+T over basal, again enhanced by RC and improved with 10mM TZD. 10mM TZD significantly increased HUVEC proliferation over control. Human islets maintained in medium 199 (mI99) in SC and RC exhibited comparable maintenance of morphology and insulin secretory profiles compared to islets maintained in RPMI, endothelial growth media and dedicated islet medium Miami# I. All cultures showed significantly increased insulin secretion in response to 16.7mM and G+T over basal; this was enhanced by RC and in certain instances further improved by adding 25mM TZD. TZD increased VEGF production and release as determined by ELISA. Post-implant vascular corrosion casts of mouse kidneys analysed by x-ray micro tomography indicates a possible TZD enhancement of microvessel growth via VEGF upregulation. Conclusions: D II /HUVEC co-culture in SC or RC does not alter the morphology of either cell type and supports D 11 function. TZD improves 0 I I and D I I/HUVEC SC and RC co-culture insulin secretion while increasing HUVEC proliferation. Human islet RC supports islet functional viability and structural integrity compared to SC while the addition of TZD occasionally further improves secretagogue induced insulin secretion. Expensive, 'dedicated' islet media showed no advantage over ml99 in terms of maintaining islet morphology or function. TZD upregulates VEGF in islets as shown by ELISA and suggested by x-ray micro tomography analysis of vascular corrosion casts. Maintenance of islets in RC and treatment with TZD prior to transplant may improve the functional viability and revascularisation rate of islet grafts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background—The exact etiology of preeclampsia is unknown, but there is growing evidence of an imbalance in angiogenic growth factors and abnormal placentation. Hydrogen sulfide (H2S), a gaseous messenger produced mainly by cystathionine ?-lyase (CSE), is a proangiogenic vasodilator. We hypothesized that a reduction in CSE activity may alter the angiogenic balance in pregnancy and induce abnormal placentation and maternal hypertension. Methods and Results—Plasma levels of H2S were significantly decreased in women with preeclampsia (P<0.01), which was associated with reduced placental CSE expression as determined by real-time polymerase chain reaction and immunohistochemistry. Inhibition of CSE activity by DL-propargylglycine reduced placental growth factorproduction from first-trimester (8–12 weeks gestation) human placental explants and inhibited trophoblast invasion in vitro. Knockdown of CSE in human umbilical vein endothelial cells by small-interfering RNA increased the release of soluble fms-like tyrosine kinase-1 and soluble endoglin, as assessed by enzyme-linked immunosorbent assay, whereas adenoviral-mediated CSE overexpression in human umbilical vein endothelial cells inhibited their release. Administration of DL-propargylglycine to pregnant mice induced hypertension and liver damage, promoted abnormal labyrinth vascularization in the placenta, and decreased fetal growth. Finally, a slow-releasing H2S-generating compound, GYY4137, inhibited circulating soluble fms-like tyrosine kinase-1 and soluble endoglin levels and restored fetal growth in mice that was compromised by DL-propargylglycine treatment, demonstrating that the effect of CSE inhibitor was attributable to inhibition of H2S production. Conclusions—These results imply that endogenous H2S is required for healthy placental vasculature and that a decrease in CSE/H2S activity may contribute to the pathogenesis of preeclampsia. (Circulation. 2013;127:2514-2522.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background-The exact etiology of preeclampsia is unknown, but there is growing evidence of an imbalance in angiogenic growth factors and abnormal placentation. Hydrogen sulfide (H2S), a gaseous messenger produced mainly by cystathionine γ-lyase (CSE), is a proangiogenic vasodilator. We hypothesized that a reduction in CSE activity may alter the angiogenic balance in pregnancy and induce abnormal placentation and maternal hypertension. Methods and Results-Plasma levels of H2S were significantly decreased in women with preeclampsia (P<0.01), which was associated with reduced placental CSE expression as determined by real-time polymerase chain reaction and immunohistochemistry. Inhibition of CSE activity by DL-propargylglycine reduced placental growth factorproduction from first-trimester (8-12 weeks gestation) human placental explants and inhibited trophoblast invasion in vitro. Knockdown of CSE in human umbilical vein endothelial cells by small-interfering RNA increased the release of soluble fms-like tyrosine kinase-1 and soluble endoglin, as assessed by enzyme-linked immunosorbent assay, whereas adenoviral-mediated CSE overexpression in human umbilical vein endothelial cells inhibited their release. Administration of DL-propargylglycine to pregnant mice induced hypertension and liver damage, promoted abnormal labyrinth vascularization in the placenta, and decreased fetal growth. Finally, a slow-releasing H2S-generating compound, GYY4137, inhibited circulating soluble fms-like tyrosine kinase-1 and soluble endoglin levels and restored fetal growth in mice that was compromised by DL-propargylglycine treatment, demonstrating that the effect of CSE inhibitor was attributable to inhibition of H2S production. Conclusions-These results imply that endogenous H2S is required for healthy placental vasculature and that a decrease in CSE/H2S activity may contribute to the pathogenesis of preeclampsia. © 2013 American Heart Association, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective— Tie2 and its ligands, the angiopoietins (Ang), are required for embryonic and postnatal angiogenesis. Previous studies have demonstrated that Tie2 is proteolytically cleaved, resulting in the production of a 75-kDa soluble receptor fragment (sTie2). We investigated mechanisms responsible for Tie2 shedding and its effects on Tie2 signaling and endothelial cellular responses. Methods and Results— sTie2 bound both Ang1 and Ang2 and inhibited angiopoietin-mediated Tie2 phosphorylation and antiapoptosis. In human umbilical vein endothelial cells, Tie2 shedding was both constitutive and induced by treatment with PMA or vascular endothelial growth factor (VEGF). Constitutive and VEGF-inducible Tie2 shedding were mediated by PI3K/Akt and p38 MAPK. Tie2 shedding was blocked by pharmacological inhibitors of either PI3K or Akt as well as by overexpression of the lipid phosphatase PTEN. In contrast, sTie2 shedding was enhanced by overexpression of either dominant negative PTEN, which increased Akt phosphorylation, or constitutively active, myristoylated Akt. Conclusions— These findings demonstrate that VEGF regulates angiopoietin-Tie2 signaling by inducing proteolytic cleavage and shedding of Tie2 via a novel PI3K/Akt-dependent pathway. These results suggest a previously unrecognized mechanism by which VEGF may inhibit vascular stabilization to promote angiogenesis and vascular remodeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exact aetiology of preeclampsia is unknown, but there is a good association with an imbalance in angiogenic growth factors and abnormal placentation [1]. Hydrogen sulphide (H2S), a gaseous messenger produced mainly by cystathionine γ-lyase (CSE), is pro-angiogenic vasodilator [2] and [3]. We hypothesized that a reduction in CSE activity may alter the angiogenic balance in pregnancy and induce abnormal placentation and maternal hypertension. Plasma levels of H2S were significantly decreased in preeclamptic women (p < 0.01), which was associated with reduced CSE message and protein expression in human placenta as determined by real-time PCR and immunohistochemistry. Inhibition of CSE activity by DL-propargylglycine (PAG) in first trimester (8–12 weeks gestation) human placental explants had reduced placenta growth factor (PlGF) production as assessed by ELISA and inhibited trophoblast invasion in vitro. Endothelial CSE knockdown by siRNA transfection increased the endogenous release of soluble fms-Like tyrosine kinase-1 (sFlt-1) and soluble endoglin, (sEng) from human umbilical vein endothelial cells while adenoviral-mediated CSE overexpression inhibited their release. Administration of PAG to pregnant mice induced hypertension, liver damage, and promoted abnormal labyrinth vascularisation in the placenta and decreased fetal growth. Finally, a slow releasing, H2S-generating compound, GYY4137, inhibited circulating sFlt-1 and sEng levels and restored fetal growth that was compromised by PAG-treatment demonstrating that the effect of CSE inhibitor was due to inhibition of H2S production. These results imply that endogenous H2S is required for healthy placental vasculature and a decrease in of CSE/H2S activity may contribute to the pathogenesis of preeclampsia. References [1] S. Ahmad, A. Ahmed, Elevated placental soluble vascular endothelial growth factor receptor-1 inhibits angiogenesis in preeclampsia, Circ Res., 95 (2004), pp. 884–891. [2] G. Yang, et al., H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase, Science, 322 (2008), pp. 587–590. [3] A. Papapetropoulos, et al., Hydrogen sulfide is an endogenous stimulator of angiogenesis, Proc Natl Acad Sci USA, 106 (2009), pp. 21972–21977.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current anti-angiogenic treatments involve the attenuation of signalling via the pro-angiogenic vascular endothelial growth factor/receptor (VEGF/VEGFR) axis. Stimulation of angiogenesis by VEGF requires the activation of the calcineurin/nuclear factor of activated T-cells (NFAT) signal transduction pathway which is inhibited by Plasma Membrane Calcium ATPase 4 (PMCA4), an endogenous calcium extrusion pump. However, PMCA4s role in calcineurin/NFAT-dependent angiogenesis is unknown. Using “gain of function” studies, we show here that adenoviral overexpression of PMCA4 in human umbilical vein endothelial cells (HUVEC) inhibited NFAT activity, decreased the expression of NFAT-dependent pro-angiogenic proteins (regulator of calcineurin 1.4 (RCAN1.4) and cyclooxygenase-2) and diminished in vitro cell migration and tube formation in response to VEGF-stimulation. Furthermore, in vivo blood vessel formation was attenuated in a matrigel plug assay by ectopic expression of PMCA4. Conversely, “loss of function” experiments by si-RNA-mediated knockdown of PMCA4 in HUVEC or isolation of mouse lung endothelial cells from PMCA4−/− mice showed increased VEGF-induced NFAT activity, RCAN1.4 expression, in vitro endothelial cell migration, tube formation and in vivo blood vessel formation. Additionally, in an in vivo pathological angiogenesis model of limb ischemia, the reperfusion of the ischemic limb of PMCA4−/− mice was augmented compared to wild-type. Disruption of the interaction between endogenous PMCA4 and calcineurin by adenoviral overexpression of the region of PMCA4 that interacts with calcineurin (residues 428–651) increased NFAT activity, RCAN1.4 protein expression and in vitro tube formation. These results identify PMCA4 as an inhibitor of VEGF-induced angiogenesis, highlighting its potential as a new therapeutic target for anti-angiogenic treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identifying the cellular responses to photodynamic therapy (PDT) is important if the mechanisms of cellular damage are to be fully understood. The relationship between sensitizer, fluence rate and the removal of cells by trypsinization was studied using the RIF-1 cell line. Following treatment of RIF-1 cells with pyridinium zinc (II) phthalocyanine (PPC), or polyhaematoporphyrin at 10 mW cm−2 (3 J cm−2), there was a significant number of cells that were not removed by trypsin incubation compared to controls. Decreasing the fluence rate from 10 to 2.5 mW cm−2 resulted in a two-fold increase in the number of cells attached to the substratum when PPC used as sensitizer; however, with 5,10,15,20 meso-tetra(hydroxyphenyl) chlorin (m-THPC) there was no resistance to trypsinization following treatment at either fluence rate. The results indicate that resistance of cells to trypsinization following PDT is likely to be both sensitizer and fluence rate dependent. Increased activity of the enzyme tissue-transglutaminase (tTGase) was observed following PPC-PDT, but not following m-THPC-PDT. Similar results were obtained using HT29 human colonic carcinoma and ECV304 human umbilical vein endothelial cell lines. Hamster fibrosarcoma cell (Met B) clones transfected with human tTGase also exhibited resistance to trypsinization following PPC-mediated photosensitization; however, a similar degree of resistance was observed in PDT-treated control Met B cells suggesting that tTGase activity alone was not involved in this process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracellular signal-regulated kinase 5 (ERK5) is activated in response to environmental stress and growth factors. Gene ablation of Erk5 in mice is embryonically lethal as a result of disruption of cardiovascular development and vascular integrity. We investigated vascular endothelial growth factor (VEGF)-mediated ERK5 activation in primary human dermal microvascular endothelial cells (HDMECs) undergoing proliferation on a gelatin matrix, and tubular morphogenesis within a collagen gel matrix. VEGF induced sustained ERK5 activation on both matrices. However, manipulation of ERK5 activity by siRNA-mediated gene silencing disrupted tubular morphogenesis without impacting proliferation. Overexpression of constitutively active MEK5 and ERK5 stimulated tubular morphogenesis in the absence of VEGF. Analysis of intracellular signalling revealed that ERK5 regulated AKT phosphorylation. On a collagen gel, ERK5 regulated VEGF-mediated phosphorylation of the pro-apoptotic protein BAD and increased expression of the anti-apoptotic protein BCL2, resulting in decreased caspase-3 activity and apoptosis suppression. Our findings suggest that ERK5 is required for AKT phosphorylation and cell survival and is crucial for endothelial cell differentiation in response to VEGF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of tissue transglutaminase (TG2) in angiogenesis is unclear and contradictory. Here we show that inhibition of extracellular TG2 protein crosslinking or downregulation of TG2 expression leads to inhibition of angiogenesis in cell culture, the aorta ring assay and in vivo models. In a human umbilical vein endothelial cell (HUVEC) co-culture model, inhibition of extracellular TG2 activity can halt the progression of angiogenesis, even when introduced after tubule formation has commenced and after addition of excess vascular endothelial growth factor (VEGF). In both cases, this leads to a significant reduction in tubule branching. Knockdown of TG2 by short hairpin (shRNA) results in inhibition of HUVEC migration and tubule formation, which can be restored by add back of wt TG2, but not by the transamidation-defective but GTP-binding mutant W241A. TG2 inhibition results in inhibition of fibronectin deposition in HUVEC monocultures with a parallel reduction in matrix-bound VEGFA, leading to a reduction in phosphorylated VEGF receptor 2 (VEGFR2) at Tyr1214 and its downstream effectors Akt and ERK1/2, and importantly its association with b1 integrin. We propose a mechanism for the involvement of matrix-bound VEGFA in angiogenesis that is dependent on extracellular TG2-related activity. © 2013 Macmillan Publishers Limited. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Potent-selective peptidomimetic inhibitors of tissue transglutaminase (TG2) were developed through a combination of protein-ligand docking and molecular dynamic techniques. Derivatives of these inhibitors were made with the aim of specific TG2 targeting to the intra- and extracellular space. A cell-permeable fluorescently labeled derivative enabled detection of in situ cellular TG2 activity in human umbilical cord endothelial cells and TG2-transduced NIH3T3 cells, which could be enhanced by treatment of cells with ionomycin. Reaction of TG2 with this fluorescent inhibitor in NIH3T3 cells resulted in loss of binding of TG2 to cell surface syndecan-4 and inhibition of translocation of the enzyme into the extracellular matrix, with a parallel reduction in fibronectin deposition. In human umbilical cord endothelial cells, this same fluorescent inhibitor also demonstrated a reduction in fibronectin deposition, cell motility, and cord formation in Matrigel. Use of the same inhibitor in a mouse model of hypertensive nephrosclerosis showed over a 40% reduction in collagen deposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Articular cartilage undergoes severe loss of proteoglycan and its constituent glycosaminoglycans (GAGs) in osteoarthritis. We hypothesize that the low GAG content of osteoarthritic cartilage renders the tissue susceptible to pathological vascularization. This was investigated using an in vitro angiogenesis model assessing endothelial cell adhesion to GAG-depleted cartilage explants. Bovine cartilage explants were treated with hyaluronidase to deplete GAG content and then seeded with fluorescently tagged human endothelial cells (HMEC-1). HMEC-1 adherence was assessed after 4 hr and 7 days. The effect of hyaluronidase treatment on GAG content, chondrocyte viability, and biochemical composition of the extracellular matrix was also determined. Hyaluronidase treatment reduced the GAG content of cartilage explants by 78 ± 3% compared with that of controls (p <0.0001). GAG depletion was associated with significantly more HMEC-1 adherence on both the surface (superficial zone) and the underside (deep zone) of the explants (both p <0.0001). The latter provided a more favorable environment for extended culture of HMEC-1 compared with the articulating surface. Hyaluronidase treatment altered the immunostaining for chondroitin sulfate epitopes, but not for lubricin. Our results support the hypothesis that articular cartilage GAGs are antiadhesive to endothelial cells and suggest that chondroitin sulfate and/or hyaluronan are responsible. The loss of these GAGs in osteoarthritis may allow osteochondral angiogenesis resulting in disease progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elevated LDL concentration in mid-life increases the risk of developing Alzheimer's disease (AD) in later life. Increased oxidative modification (oxLDL) and nitration is observed during dementia and hypercholesterolemia. We investigated the hypothesis that statin intervention in mid-life mitigates the inflammatory effects of oxLDL on the microvasculature. Human microvascular endothelial cells (HMVEC) were maintained on transwells to mimic the microvasculature and exposed to patient and control LDL. Blood was obtained from statin-naïve, normo- and hyperlipidaemic subjects, AD with vascular dementia (AD-plus) and AD subjects (n=10/group) at baseline. Only hyperlipidaemic subjects with normal cognitive function received 40mg simvastatin intervention/day for three months. Blood was re-analysed from normo- and hyper-lipidaemic subjects after three months. LDL isolated from statin-naïve hyperlipidaemic, AD and AD-plus subjects was more oxidised (agarose gel electrophoretic mobility, protein carbonyl content and 8-isoprostane F2α) compared to control subjects. Statin intervention decreased protein carbonyls (2.5±0.4 Vs 3.95±0.2nmol/mg; P<0.001) and 8-isoprostane F2α (30.4±4.0 pg/ml Vs 43.5±8.42 pg/ml; P<0.05). HMVEC treatment with LDL-lipids from hyperlipidaemic, AD and AD-plus subjects impaired endothelial tight junction expression and decreased total glutathione levels (AD; 18.61±1.3, AD-plus; 16.5±0.7nmol/mg protein) compared to untreated cells (23.8±1.2 vs nmol/mg protein). Basolateral IL-6 secretion was increased by LDL-lipids from hyperlipidaemic (78.4±1.9 pg/ml), AD (63.2±5.9 pg/ml) and AD-plus (80.8±0.9 pg/ml) groups compared to healthy subject lipids (18.6±3.6 pg/ml). LDL-Lipids isolated after statin intervention did not affect endothelial function. In summary, LDL-lipids from hypercholesterolaemic, AD and AD-plus patients are inflammatory to HMVEC. In vivo intervention with statins reduces the damaging effects of LDL-lipids on HMVEC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue transglutaminase (TG2) can induce post-translational modification of proteins, resulting in protein cross-linking or incorporation of polyamines into substrates, and can also function as a signal transducing G protein. The role of TG2 in the formation of insoluble cross-links has led to its implication in some neurodegenerative conditions. Exposure of pre-differentiated SH-SY5Y cells to the Parkinsonian neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+) resulted in significant dose-dependent reductions in TG2 protein levels, measured by probing Western blots with a TG2-specific antibody. Transglutaminase (TG) transamidating activity, on the other hand, monitored by incorporation of a polyamine pseudo-substrate into cellular proteins, was increased. Inhibitors of TG (putrescine) and TG2 (R283) exacerbated MPP+ toxicity, suggesting that activation of TG2 may promote a survival response in this toxicity paradigm.