24 resultados para Homolytic aromatic substitution
Resumo:
A long-period grating (LPG) sensor is used to detect small variations in the concentration of an organic aromatic compound (xylene) in a paraffin (heptane) solution. A new design procedure is adopted and demonstrated to maximize the sensitivity of LPG (wavelength shift for a change in the surrounding refractive index, (dλ/dn3)) for a given application. The detection method adopted is comparable to the standard technique used in industry (high performance liquid chromatograph and UV spectroscopy) which has a relative accuracy between ∼±0.5% and 5%. The minimum detectable change in volumetric concentration is 0.04% in a binary fluid with the detection system presented. This change of concentration relates to a change in refractive index of Δn ∼ 6 × 10-5. © 2001 Elsevier Science B.V.
Resumo:
Scavenging of C- and O-centered free radicals is mandatory in processing stabilization of polypropylene. Phenolic antioxidants act principally as O-radical scavengers only. Aromatic amines, N,N'-disubstituted 1,4-phenylenediamines (PD) and 4,4'disubstituted diphenylamines (DPA), scavenge both C- and O-centered radicals and have consequently a broader activity spectrum. PD cannot be used, however, in polypropylene because of formation of strongly discoloring and staining sacrificial transformation products. Such products formed from DPA have even more discoloring properties. A good processing stability and acceptable extent of discoloration can be achieved by blends of phenols with 4,4'-di-tert.octyl DPA. The effect is considered as a beneficial cooperation between the two chain-breaking antioxidants involving interactions with amine-based transformation products.
Resumo:
The incretin hormone glucagon-like peptide-1(7-36)amide (GLP-1) has been deemed of considerable importance in the regulation of blood glucose. Its effects, mediated through the regulation of insulin, glucagon, and somatostatin, are glucose-dependent and contribute to the tight control of glucose levels. Much enthusiasm has been assigned to a possible role of GLP-1 in the treatment of type 2 diabetes. GLIP-l's action unfortunately is limited through enzymatic inactivation caused by dipeptidylpeptidase IV (DPP IV). It is now well established that modifying GLP-1 at the N-terminal amino acids, His7 and Ala8, can greatly improve resistance to this enzyme. Little research has assessed what effect Glu9-substitution has on GLP-1 activity and its degradation by DPP IV. Here, we report that the replacement of Glu9 of GLP-1 with Lys dramatically increased resistance to DPP IV. This analogue (Lys9)GLP-1, exhibited a preserved GLP-1 receptor affinity, but the usual stimulatory effects of GLP-1 were completely eliminated, a trait duplicated by the other established GLP-1-antagonists, exendin (9-39) and GLP-1 (9-36)amide. We investigated the in vivo antagonistic actions of (Lys9)GLP-1 in comparison with GLP-1(9-36)amide and exendin (9-39) and revealed that this novel analogue may serve as a functional antagonist of the GLP-1 receptor.
Resumo:
Background Individuals with clinical and subclinical depression (dysphoria) exhibit problems intentionally forgetting unwanted memories on the think/no-think (TNT) paradigm (Anderson & Green, 2001). However, providing substitute words to think about instead of the to-be-forgotten targets can improve forgetting in depressed patients. Objectives To determine if thought substitution can enhance forgetting in dysphoric participants and to examine the potential mechanisms (blocking or inhibition) that might underpin successful forgetting. Methods Thirty-six dysphoric and 36 non-dysphoric participants learned neutral word-pairs and then practiced responding with the targets to some cues (think trials) and suppressing responses to others (no think trials). Half the participants were provided with substitute words to recall instead of the original targets (aided suppression) and half were simply told to avoid thinking about the targets (unaided suppression). Finally, participants completed two recall tests for the targets; one cued with the original probes and one with independent probes. Results Regardless of suppression condition (aided or unaided), dysphoric participants exhibited impaired forgetting, relative to their non-dysphoric counterparts, but only when cued with the original probes. Furthermore, higher depression scores were associated with poorer forgetting. In the aided condition, successful forgetting was observed on both the original and independent probe tasks, which supports the inhibitory account of thought substitution. Limitations Non-clinical status of the dysphoric participants was not confirmed using a validated measure. Conclusions Findings do not support the utility of thought substitution as a method of improving the forgetting in depressed participants, but do support the inhibition account of thought substitution.
Resumo:
Two experiments were conducted to determine if natural and induced dysphoria is associated with impaired forgetting and, whether a thought-substitution strategy would ameliorate any observed deficits. Study 1: 36 dysphoric & 36 non-dysphoric participants learnt a series of emotional word pairs. Participants were subsequently presented with some of the cues and were asked to recall the targets or prevent the targets from coming to mind. Half of the participants were provided with substitute words to recall instead of the original targets (aided suppression). At final memory testing, participants were asked to recall the targets to all cues. Dysphoric participants exhibited impaired forgetting, even when using a thought substitution strategy. Non-dysphoric participants, however, were able to use substitutes to suppress words. Study 2: 50 healthy participants initially completed the aided condition of the forgetting task. Participants were then given a positive or negative mood-induction, followed by another version of the forgetting task. Although all participants showed a forgetting effect prior to the mood-induction, only the positive group was successful at forgetting after the mood induction. Taken together, these findings do not support the utility of thought-substitution as an aid to forgetting in individuals in a naturally or induced dysphoric mood.
Resumo:
CuAlO2 has been examined as a potential luminescent material by substituting Eu for Al cations in the delafossite structure. CuAlO2:Eu3+ nanofibers have been prepared via electrospinning for the ease of mitigating synthesis requirements and for future optoelectronics and emerging applications. Single-phase CuAlO2 fibers could be obtained at a temperature of 1100 °C in air. The Eu was successfully doped in the delafossite structure and two strong emission bands at ~405 and 610 nm were observed in the photoluminescence spectra. These bands are due to the intrinsic near-band-edge transition of CuAlO2 and the f-f transition of the Eu3+ activator, respectively. Further electrical characterization indicated that these fibers exhibit semiconducting behavior and the introduction of Eu could act as band-edge modifiers, thus changing the thermal activation energies. In light of this study, CuAlO2:Eu3+ fibers with both strong photoluminescence and p-type conductivity could be produced by tailoring the rare earth doping concentrations.
Resumo:
Substitution of branded medicine with a generic equivalent is already common. Robin Ferner, Warren Lenney, and John Marriott argue that concerns about UK plans to let pharmacists make the decision are unwarranted.
Resumo:
This article describes the synthesis, structures and systematic study of the spectroscopic and redox properties of a series of octahedral molybdenum metal cluster complexes with aromatic sulfonate ligands (nBu4N)2[{Mo6X8}(OTs)6] and (nBu4N)2[{Mo6X8}(PhSO3)6] (where X- is Cl-, Br- or I-; OTs- is p-toluenesulfonate and PhSO3 - is benzenesulfonate). All the complexes demonstrated photoluminescence in the red region and an ability to generate singlet oxygen. Notably, the highest quantum yields (>0.6) and narrowest emission bands were found for complexes with a {Mo6I8}4+ cluster core. Moreover, cyclic voltammetric studies revealed that (nBu4N)2[{Mo6X8}(OTs)6] and (nBu4N)2[{Mo6X8}(PhSO3)6] confer enhanced stability towards electrochemical oxidation relative to corresponding starting complexes (nBu4N)2[{Mo6X8}X6].