19 resultados para HPA-axis
Resumo:
High precision manufacturers continuously seek out disruptive technologies to improve the quality, cost, and delivery of their products. With the advancement of machine tool and measurement technology many companies are ready to capitalise on the opportunity of on-machine measurement (OMM). Coupled with business case, manufacturing engineers are now questioning whether OMM can soon eliminate the need for post-process inspection systems. Metrologists will however argue that the machining environment is too hostile and that there are numerous process variables which need consideration before traceable measurement on-the-machine can be achieved. In this paper we test the measurement capability of five new multi-axis machine tools enabled as OMM systems via on-machine probing. All systems are tested under various operating conditions in order to better understand the effects of potentially significant variables. This investigation has found that key process variables such as machine tool warm-up and tool-change cycles can have an effect on machine tool measurement repeatability. New data presented here is important to many manufacturers whom are considering utilising their high precision multi-axis machine tools for both the creation and verification of their products.
Resumo:
Measuring and compensating the pivot points of five-axis machine tools is always challenging and very time consuming. This paper presents a newly developed approach for automatic measurement and compensation of pivot point positional errors on five-axis machine tools. Machine rotary axis errors are measured using a circular test. This method has been tested on five-axis machine tools with swivel table configuration. Results show that up to 99% of the positional errors of the rotary axis can be compensated by using this approach.
Resumo:
The concept of measurement-enabled production is based on integrating metrology systems into production processes and generated significant interest in industry, due to its potential to increase process capability and accuracy, which in turn reduces production times and eliminates defective parts. One of the most promising methods of integrating metrology into production is the usage of external metrology systems to compensate machine tool errors in real time. The development and experimental performance evaluation of a low-cost, prototype three-axis machine tool that is laser tracker assisted are described in this paper. Real-time corrections of the machine tool's absolute volumetric error have been achieved. As a result, significant increases in static repeatability and accuracy have been demonstrated, allowing the low-cost three-axis machine tool to reliably reach static positioning accuracies below 35 μm throughout its working volume without any prior calibration or error mapping. This is a significant technical development that demonstrated the feasibility of the proposed methods and can have wide-scale industrial applications by enabling low-cost and structural integrity machine tools that could be deployed flexibly as end-effectors of robotic automation, to achieve positional accuracies that were the preserve of large, high-precision machine tools.
Resumo:
Operation sequencing is one of the crucial tasks in process planning. However, it is an intractable process to identify an optimized operation sequence with minimal machining cost in a vast search space constrained by manufacturing conditions. Also, the information represented by current process plan models for three-axis machining is not sufficient for five-axis machining owing to the two extra degrees of freedom and the difficulty of set-up planning. In this paper, a representation of process plans for five-axis machining is proposed, and the complicated operation sequencing process is modelled as a combinatorial optimization problem. A modern evolutionary algorithm, i.e. the particle swarm optimization (PSO) algorithm, has been employed and modified to solve it effectively. Initial process plan solutions are formed and encoded into particles of the PSO algorithm. The particles 'fly' intelligently in the search space to achieve the best sequence according to the optimization strategies of the PSO algorithm. Meanwhile, to explore the search space comprehensively and to avoid being trapped into local optima, several new operators have been developed to improve the particle movements to form a modified PSO algorithm. A case study used to verify the performance of the modified PSO algorithm shows that the developed PSO can generate satisfactory results in optimizing the process planning problem. © IMechE 2009.