38 resultados para HLA-DRB1 SHARED EPITOPE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomistic Molecular Dynamics provides powerful and flexible tools for the prediction and analysis of molecular and macromolecular systems. Specifically, it provides a means by which we can measure theoretically that which cannot be measured experimentally: the dynamic time-evolution of complex systems comprising atoms and molecules. It is particularly suitable for the simulation and analysis of the otherwise inaccessible details of MHC-peptide interaction and, on a larger scale, the simulation of the immune synapse. Progress has been relatively tentative yet the emergence of truly high-performance computing and the development of coarse-grained simulation now offers us the hope of accurately predicting thermodynamic parameters and of simulating not merely a handful of proteins but larger, longer simulations comprising thousands of protein molecules and the cellular scale structures they form. We exemplify this within the context of immunoinformatics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Faultline theory suggests that negative effects of team diversity are better understood by considering the influence of different dimensions of diversity in conjunction, rather than for each dimension separately. We develop and extend the social categorization analysis that lies at the heart of faultline theory to identify a factor that attenuates the negative influence of faultlines: the extent to which the team has shared objectives. The hypothesized moderating role of shared objectives received support in a study of faultlines formed by differences in gender, tenure, and functional background in 42 top management teams. The focus on top management teams has the additional benefit of providing the first test of the relationship between diversity faultlines and objective indicators of organizational performance. We discuss how these findings, and the innovative way in which we operationalized faultlines, extend faultline theory and research as well as offer guidelines to manage diversity faultlines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T cell activation is the final step in a complex pathway through which pathogen-derived peptide fragments can elicit an immune response. For it to occur, peptides must form stable complexes with Major Histocompatibility Complex (MHC) molecules and be presented on the cell surface. Computational predictors of MHC binding are often used within in silico vaccine design pathways. We have previously shown that, paradoxically, most bacterial proteins known experimentally to elicit an immune response in disease models are depleted in peptides predicted to bind to human MHC alleles. The results presented here, derived using software proven through benchmarking to be the most accurate currently available, show that vaccine antigens contain fewer predicted MHC-binding peptides than control bacterial proteins from almost all subcellular locations with the exception of cell wall and some cytoplasmic proteins. This effect is too large to be explained from the undoubted lack of precision of the software or from the amino acid composition of the antigens. Instead, we propose that pathogens have evolved under the influence of the host immune system so that surface proteins are depleted in potential MHC-binding peptides, and suggest that identification of a protein likely to contain a single immuno-dominant epitope is likely to be a productive strategy for vaccine design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human leukocyte antigen (HLA)-DM is a critical participant in antigen presentation that catalyzes the dissociation of the Class II-associated Invariant chain-derived Peptide (CLIP) from the major histocompatibility complex (MHC) Class II molecules. There is competition amongst peptides for access to an MHC Class II groove and it has been hypothesised that DM functions as a 'peptide editor' that catalyzes the replacement of one peptide for another within the groove. It is established that the DM catalyst interacts directly with the MHC Class II but the precise location of the interface is unknown. Here, we combine previously described mutational data with molecular docking and energy minimisation simulations to identify a putative interaction site of >4000A2 which agrees with known point mutational data for both the DR and DM molecule. The docked structure is validated by comparison with experimental data and previously determined properties of protein-protein interfaces. A possible dissociation mechanism is suggested by the presence of an acidic cluster near the N terminus of the bound peptide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The article explores the possibilities of formalizing and explaining the mechanisms that support spatial and social perspective alignment sustained over the duration of a social interaction. The basic proposed principle is that in social contexts the mechanisms for sensorimotor transformations and multisensory integration (learn to) incorporate information relative to the other actor(s), similar to the "re-calibration" of visual receptive fields in response to repeated tool use. This process aligns or merges the co-actors' spatial representations and creates a "Shared Action Space" (SAS) supporting key computations of social interactions and joint actions; for example, the remapping between the coordinate systems and frames of reference of the co-actors, including perspective taking, the sensorimotor transformations required for lifting jointly an object, and the predictions of the sensory effects of such joint action. The social re-calibration is proposed to be based on common basis function maps (BFMs) and could constitute an optimal solution to sensorimotor transformation and multisensory integration in joint action or more in general social interaction contexts. However, certain situations such as discrepant postural and viewpoint alignment and associated differences in perspectives between the co-actors could constrain the process quite differently. We discuss how alignment is achieved in the first place, and how it is maintained over time, providing a taxonomy of various forms and mechanisms of space alignment and overlap based, for instance, on automaticity vs. control of the transformations between the two agents. Finally, we discuss the link between low-level mechanisms for the sharing of space and high-level mechanisms for the sharing of cognitive representations. © 2013 Pezzulo, Iodice, Ferraina and Kessler.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological experiments often produce enormous amount of data, which are usually analyzed by data clustering. Cluster analysis refers to statistical methods that are used to assign data with similar properties into several smaller, more meaningful groups. Two commonly used clustering techniques are introduced in the following section: principal component analysis (PCA) and hierarchical clustering. PCA calculates the variance between variables and groups them into a few uncorrelated groups or principal components (PCs) that are orthogonal to each other. Hierarchical clustering is carried out by separating data into many clusters and merging similar clusters together. Here, we use an example of human leukocyte antigen (HLA) supertype classification to demonstrate the usage of the two methods. Two programs, Generating Optimal Linear Partial Least Square Estimations (GOLPE) and Sybyl, are used for PCA and hierarchical clustering, respectively. However, the reader should bear in mind that the methods have been incorporated into other software as well, such as SIMCA, statistiXL, and R.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accurate in silico identification of T-cell epitopes is a critical step in the development of peptide-based vaccines, reagents, and diagnostics. It has a direct impact on the success of subsequent experimental work. Epitopes arise as a consequence of complex proteolytic processing within the cell. Prior to being recognized by T cells, an epitope is presented on the cell surface as a complex with a major histocompatibility complex (MHC) protein. A prerequisite therefore for T-cell recognition is that an epitope is also a good MHC binder. Thus, T-cell epitope prediction overlaps strongly with the prediction of MHC binding. In the present study, we compare discriminant analysis and multiple linear regression as algorithmic engines for the definition of quantitative matrices for binding affinity prediction. We apply these methods to peptides which bind the well-studied human MHC allele HLA-A*0201. A matrix which results from combining results of the two methods proved powerfully predictive under cross-validation. The new matrix was also tested on an external set of 160 binders to HLA-A*0201; it was able to recognize 135 (84%) of them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background - The main processing pathway for MHC class I ligands involves degradation of proteins by the proteasome, followed by transport of products by the transporter associated with antigen processing (TAP) to the endoplasmic reticulum (ER), where peptides are bound by MHC class I molecules, and then presented on the cell surface by MHCs. The whole process is modeled here using an integrated approach, which we call EpiJen. EpiJen is based on quantitative matrices, derived by the additive method, and applied successively to select epitopes. EpiJen is available free online. Results - To identify epitopes, a source protein is passed through four steps: proteasome cleavage, TAP transport, MHC binding and epitope selection. At each stage, different proportions of non-epitopes are eliminated. The final set of peptides represents no more than 5% of the whole protein sequence and will contain 85% of the true epitopes, as indicated by external validation. Compared to other integrated methods (NetCTL, WAPP and SMM), EpiJen performs best, predicting 61 of the 99 HIV epitopes used in this study. Conclusion - EpiJen is a reliable multi-step algorithm for T cell epitope prediction, which belongs to the next generation of in silico T cell epitope identification methods. These methods aim to reduce subsequent experimental work by improving the success rate of epitope prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The underlying assumption in quantitative structure–activity relationship (QSAR) methodology is that related chemical structures exhibit related biological activities. We review here two QSAR methods in terms of their applicability for human MHC supermotif definition. Supermotifs are motifs that characterise binding to more than one allele. Supermotif definition is the initial in silico step of epitope-based vaccine design. The first QSAR method we review here—the additive method—is based on the assumption that the binding affinity of a peptide depends on contributions from both amino acids and the interactions between them. The second method is a 3D-QSAR method: comparative molecular similarity indices analysis (CoMSIA). Both methods were applied to 771 peptides binding to 9 HLA alleles. Five of the alleles (A*0201, A* 0202, A*0203, A*0206 and A*6802) belong to the HLA-A2 superfamily and the other four (A*0301, A*1101, A*3101 and A*6801) to the HLA-A3 superfamily. For each superfamily, supermotifs defined by the two QSAR methods agree closely and are supported by many experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TAP is responsible for the transit of peptides from the cytosol to the lumen of the endoplasmic reticulum. In an immunological context, this event is followed by the binding of peptides to MHC molecules before export to the cell surface and recognition by T cells. Because TAP transport precedes MHC binding, TAP preferences may make a significant contribution to epitope selection. To assess the impact of this preselection, we have developed a scoring function for TAP affinity prediction using the additive method, have used it to analyze and extend the TAP binding motif, and have evaluated how well this model acts as a preselection step in predicting MHC binding peptides. To distinguish between MHC alleles that are exclusively dependent on TAP and those exhibiting only a partial dependence on TAP, two sets of MHC binding peptides were examined: HLA-A*0201 was selected as a representative of partially TAP-dependent HLA alleles, and HLA-A*0301 represented fully TAP-dependent HLA alleles. TAP preselection has a greater impact on TAP-dependent alleles than on TAP-independent alleles. The reduction in the number of nonbinders varied from 10% (TAP-independent) to 33% (TAP-dependent), suggesting that TAP preselection is an important component in the successful in silico prediction of T cell epitopes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-scale massively parallel molecular dynamics (MD) simulations of the human class I major histo-compatibility complex (MHC) protein HLA-A*0201 bound to a decameric tumor-specific antigenic peptide GVY-DGREHTV were performed using a scalable MD code on high-performance computing platforms. Such computational capabilities put us in reach of simulations of various scales and complexities. The supercomputing resources available Large-scale massively parallel molecular dynamics (MD) simulations of the human class I major histocompatibility complex (MHC) protein HLA-A*0201 bound to a decameric tumor-specific antigenic peptide GVYDGREHTV were performed using a scalable MD code on high-performance computing platforms. Such computational capabilities put us in reach of simulations of various scales and complexities. The supercomputing resources available for this study allow us to compare directly differences in the behavior of very large molecular models; in this case, the entire extracellular portion of the peptide–MHC complex vs. the isolated peptide binding domain. Comparison of the results from the partial and the whole system simulations indicates that the peptide is less tightly bound in the partial system than in the whole system. From a detailed study of conformations, solvent-accessible surface area, the nature of the water network structure, and the binding energies, we conclude that, when considering the conformation of the α1–α2 domain, the α3 and β2m domains cannot be neglected. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 1803–1813, 2004

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to define and manipulate the interaction of peptides with MHC molecules has immense immunological utility, with applications in epitope identification, vaccine design, and immunomodulation. However, the methods currently available for prediction of peptide-MHC binding are far from ideal. We recently described the application of a bioinformatic prediction method based on quantitative structure-affinity relationship methods to peptide-MHC binding. In this study we demonstrate the predictivity and utility of this approach. We determined the binding affinities of a set of 90 nonamer peptides for the MHC class I allele HLA-A*0201 using an in-house, FACS-based, MHC stabilization assay, and from these data we derived an additive quantitative structure-affinity relationship model for peptide interaction with the HLA-A*0201 molecule. Using this model we then designed a series of high affinity HLA-A2-binding peptides. Experimental analysis revealed that all these peptides showed high binding affinities to the HLA-A*0201 molecule, significantly higher than the highest previously recorded. In addition, by the use of systematic substitution at principal anchor positions 2 and 9, we showed that high binding peptides are tolerant to a wide range of nonpreferred amino acids. Our results support a model in which the affinity of peptide binding to MHC is determined by the interactions of amino acids at multiple positions with the MHC molecule and may be enhanced by enthalpic cooperativity between these component interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classification of MHC molecules into supertypes in terms of peptide-binding specificities is an important issue, with direct implications for the development of epitope-based vaccines with wide population coverage. In view of extremely high MHC polymorphism (948 class I and 633 class II HLA alleles) the experimental solution of this task is presently impossible. In this study, we describe a bioinformatics strategy for classifying MHC molecules into supertypes using information drawn solely from three-dimensional protein structure. Two chemometric techniques–hierarchical clustering and principal component analysis–were used independently on a set of 783 HLA class I molecules to identify supertypes based on structural similarities and molecular interaction fields calculated for the peptide binding site. Eight supertypes were defined: A2, A3, A24, B7, B27, B44, C1, and C4. The two techniques gave 77% consensus, i.e., 605 HLA class I alleles were classified in the same supertype by both methods. The proposed strategy allowed “supertype fingerprints” to be identified. Thus, the A2 supertype fingerprint is Tyr9/Phe9, Arg97, and His114 or Tyr116; the A3-Tyr9/Phe9/Ser9, Ile97/Met97 and Glu114 or Asp116; the A24-Ser9 and Met97; the B7-Asn63 and Leu81; the B27-Glu63 and Leu81; for B44-Ala81; the C1-Ser77; and the C4-Asn77. action fields calculated for the peptide binding site. Eight supertypes were defined: A2, A3, A24, B7, B27, B44, C1, and C4. The two techniques gave 77% consensus, i.e., 605 HLA class I alleles were classified in the same supertype by both methods. The proposed strategy allowed “supertype fingerprints” to be identified. Thus, the A2 supertype fingerprint is Tyr9/Phe9, Arg97, and His114 or Tyr116; the A3-Tyr9/Phe9/Ser9, Ile97/Met97 and Glu114 or Asp116; the A24-Ser9 and Met97; the B7-Asn63 and Leu81; the B27-Glu63 and Leu81; for B44-Ala81; the C1-Ser77; and the C4-Asn77.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivation: The immunogenicity of peptides depends on their ability to bind to MHC molecules. MHC binding affinity prediction methods can save significant amounts of experimental work. The class II MHC binding site is open at both ends, making epitope prediction difficult because of the multiple binding ability of long peptides. Results: An iterative self-consistent partial least squares (PLS)-based additive method was applied to a set of 66 pep- tides no longer than 16 amino acids, binding to DRB1*0401. A regression equation containing the quantitative contributions of the amino acids at each of the nine positions was generated. Its predictability was tested using two external test sets which gave r pred =0.593 and r pred=0.655, respectively. Furthermore, it was benchmarked using 25 known T-cell epitopes restricted by DRB1*0401 and we compared our results with four other online predictive methods. The additive method showed the best result finding 24 of the 25 T-cell epitopes. Availability: Peptides used in the study are available from http://www.jenner.ac.uk/JenPep. The PLS method is available commercially in the SYBYL molecular modelling software package. The final model for affinity prediction of peptides binding to DRB1*0401 molecule is available at http://www.jenner.ac.uk/MHCPred. Models developed for DRB1*0101 and DRB1*0701 also are available in MHC- Pred

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate T-cell epitope prediction is a principal objective of computational vaccinology. As a service to the immunology and vaccinology communities at large, we have implemented, as a server on the World Wide Web, a partial least squares-base multivariate statistical approach to the quantitative prediction of peptide binding to major histocom-patibility complexes (MHC), the key checkpoint on the antigen presentation pathway within adaptive,cellular immunity. MHCPred implements robust statistical models for both Class I alleles (HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203,HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3301, HLA-A*6801, HLA-A*6802 and HLA-B*3501) and Class II alleles (HLA-DRB*0401, HLA-DRB*0401and HLA-DRB* 0701).