43 resultados para HIGH-AFFINITY BINDING
Resumo:
The CHO-K1 cell line responds to the peptide amylin by a rapid elevation of cAMP. The related peptide calcitonin gene-related peptide (CGRP) is 100 times less potent at stimulating adenylate cyclase than is amylin. The actions of amylin at this receptor are concentration dependent and not antagonized by the CGRP antagonist CGRP-(8-37). Although these cells have receptors for calcitonin, amylin is unable to take part in any high affinity interaction with these receptors, as assessed by radioligand binding. The CHO-K1 cell line has receptors for amylin that are distinct from those for calcitonin and CGRP.
Resumo:
1 The L6 myocyte cell line expresses high affinity receptors for calcitonin gene-related peptide (CGRP) which are coupled to activation of adenylyl cyclase. The biochemical pharmacology of these receptors has been examined by radioligand binding or adenosine 3':5'-cyclic monophosphate (cyclic AMP) accumulation. 2 In intact cells at 37 degrees C, human and rat alpha- and beta-CGRP all activated adenylyl cyclase with EC50s of about 1.5 nM. A number of CGRP analogues containing up to five amino acid substitutions showed similar potencies. In membrane binding studies at 22 degrees C in 1 mM Mg2+, the above all bound to a single site with IC50s of 0.1-0.4 nM. 3 The fragment CGRP(8-37) acted as a competitive antagonist of CGRP stimulation of adenylyl cyclase with a calculated Kd of 5 nM. The Kd determined in membrane binding assays was lower (0.5 nM). 4 The N-terminal extended human alpha-CGRP analogue Tyro-CGRP activated adenylyl cyclase and inhibited [125I]-iodohistidyl-CGRP binding less potently than human alpha-CGRP (EC50 for cyclase = 12 nM, IC50 for binding = 4 nM). 5 The pharmacological profile of the L6 CGRP receptor suggests that it most closely resembles sites on skeletal muscle, cardiac myocytes and hepatocytes. The L6 cell line should be a stable homogeneous model system in which to study CGRP mechanisms and pharmacology."
Resumo:
A simple protein-DNA interaction analysis has been developed using a high-affinity/high-specificity zinc finger protein. In essence, purified protein samples are immobilized directly onto the surface of microplate wells, and fluorescently labeled DNA is added in solution. After incubation and washing, bound DNA is detected in a standard microplate reader. The minimum sensitivity of the assay is approximately 0.2 nM DNA. Since the detection of bound DNA is noninvasive and the protein-DNA interaction is not disrupted during detection, iterative readings may be taken from the same well, after successive alterations in interaction conditions, if required. In this respect, the assay may therefore be considered real time and permits appropriate interaction conditions to be determined quantitatively. The assay format is ideally suited to investigate the interactions of purified unlabeled DNA binding proteins in a high-throughput format.
Resumo:
Proteolysis-inducing factor (PIF) is a sulfated glycoprotein produced by cachexia-inducing tumors, which induces atrophy of skeletal muscle. PIF has been shown to bind specifically with high affinity (Kd, in nanomolar) to sarcolemma membranes from skeletal muscle of both the mouse and the pig, as well as murine myoblasts and a human muscle cell line. Ligand binding was abolished after enzymatic deglycosylation, suggesting that binding was mediated through the oligosaccharide chains in PIF. Chondroitin sulfate, but not heparan or dermatan sulfate, showed competitive inhibition (Kd, 1.1 × 10-7 mol/L) of binding of PIF to the receptor, suggesting an interaction with the sulfated oligosaccharide chains. Ligand blotting of [ 35S]PIF to triton solublized membranes from C2C 12 cells provided evidence for a binding protein of apparent M r of ∼40,000. Amino acid sequence analysis showed the PIF receptor to be a DING protein. Antisera reactive to a 19mer from the N-terminal amino acid residues of the binding protein attenuated protein degradation and activation of the ubiquitin-proteasome pathway induced by PIF in murine myotubes. In addition, the antisera was highly effective in attenuating the decrease in body weight in mice bearing the MAC16 tumor, with a significant increase in muscle wet weight due to an increase in the rate of protein synthesis, together with a reduction in protein degradation through attenuation of the increased proteasome expression and activity. These results confirm that the PIF binding protein has a functional role in muscle protein atrophy in cachexia and that it represents a potential new therapeutic target. ©2007 American Association for Cancer Research.
Resumo:
A simple protein-DNA interaction analysis has been developed using both a high-affinity/high-specificity zinc finger protein and a low-specificity zinc finger protein with nonspecific DNA binding capability. The latter protein is designed to mimic background binding by proteins generated in randomized or shuffled gene libraries. In essence, DNA is immobilized onto the surface of microplate wells via streptavidin capture, and green fluorescent protein (GFP)-labeled protein is added in solution as part of a crude cell lysate or protein mixture. After incubation and washing, bound protein is detected in a standard microplate reader. The minimum sensitivity of the assay is approximately 0.4 nM protein. The assay format is ideally suited to investigate the interactions of DNA binding proteins from within crude cell extracts and/or mixtures of proteins that may be encountered in protein libraries generated by codon randomization or gene shuffling.
Resumo:
The microbial demand for iron is often met by the elaboration of siderophores into the surrounding medium and expression of cognate outer membrane receptors for the ferric siderophore complexes. Conditions of iron limitation, such as those encountered in vivo, cause Pseudomonas aeruginosa to express two high-affinity iron-uptake systems based on pyoverdin and pyochelin. These systems will operate both in the organism's natural habitat, soil and water, where the solubility of iron at neutral pH is extremely low, and in the human host where the availability of free iron is too low to sustain bacterial growth due to the iron-binding glycoproteins transferrin and lactoferrin. Cross-feeding and radiolabelled iron uptake experiments demonstrated that pyoverdin biosynthesis and uptake were highly heterogeneous amongst P.aeruginosa strains, that growth either in the presence of pyoverdin or pyochelin resulted in induction of specific IROMPs, and that induction of iron uptake is siderophore-specific. The P.aeruginosa Tn5 mutant PH1 is deficient in ferripyoverdin uptake and resistant to pyocin Sa, suggesting that the site of interaction of pyocin Sa is a ferripyoverdin receptor. Additional Tn5 mutants appeared to exploit different strategies to achieve pyocin Sa-resistance, involving modifications in expression of pyoverdin-mediated iron uptake, indicating that complex regulatory systems exist to enable these organisms to compete effectively for iron. Modulation of expression of IROMPs prompted a study of the mechanism of uptake of a semi-synthetic C(7) α-formamido substituted cephalosporin BRL 41897A. Sensitivity to this agent correlated with expression of the 75 kDa ferri-pyochelin receptor and demonstrated the potential of high-affinity iron uptake systems for targeting of novel antibiotics. Studies with ferri-pyoverdin uptake-deficient mutant PH1 indicated that expression of outer membrane protein G (OprG), which is usually expressed under iron-rich conditions and repressed under iron-deficient conditions, was perturbed. Attempts were made to clone the oprG gene using a degenerate probe based on the N-terminal amino acid sequence. A strongly hybridising HindIll restriction fragment was cloned and sequenced, but failed to reveal an open reading frame correspondmg to OprG. However, there appears to be good evidence that a part of the gene codmg for the hydrophilic membrane-associated ATP-binding component of a hitherto uncharacterised periplasmic- binding-protein-dependent transport system has been isolated. The full organisation and sequence of the operon, and substrate for this putative transport system, are yet: to be elucidated,
Resumo:
Quiescent rat thymocytes were stimulated to divide by a variety of agents. One such mitogen was the neurotransmitter acetylcholine which exhibited a biphasic action. Interaction with low affinity nicotinic receptors was linked with an obligatory requirement for magnesium ions whereas combination with high affinity muscarinic receptors induced mitosis only if calcium ions were present in the medium. Binding of acetylcholine to its muscarinic receptor enhanced calcium influx and increased intracellular calcium levels causing calmodulin activation, a necessary prelude to DNA synthesis and mitosis. Nicotinic receptor activation may be associated with a magnesium influx and stimulation of cells in a calmodulin-independent fashion. Parathyroid hormone and its analogues exhibited only a monophasic mitogenic action. This response was linked to calcium influx, a rise in cytosolic calcium and calmodulin activation. Parathyroid hormone did not stimulate adenylate cyclase in thymocytes and decreased cellular cyclic AMP concentrations. Picomolar amounts of interleukin-2 (IL-2) also stimulated division in thymocytes derived from 3-month old rats by binding to high affinity receptors. The response in thymocytes from newborn and foetal animals was greater reflecting the larger proportion of cells bearing receptors at this age. The mitogenic effect of IL-2 was abolished by a monoclonal antibody directed against the IL-2 receptor. Injections of IL-2 itself or the administration of IL-2 secreting activated syngeneic spleen cells also stimulated proliferation of both thymus and bone marrow cells in vivo. Likewise immunisation with pertussis toxin, which enhances endogenous IL2 production, also increased mitosis in these tissues. Calcium influx, increased cytosolic Ca2+ levels and calmodulin activation are associated features of the mitogenic action of IL-2. Interleukin-1 was also found to be mitogenic in thymic lymphocyte cultures. The responses to this mitogen and to parathyroid hormone and acetylcholine were not inhibited by the anti-IL2 receptor antibody suggesting that the thymic lymphocyte bears discrete receptors for these agents. Subtle interactions of hormones, neurotransmitters and interleukins may thus contribute to the turnover and control of lymphoid cells in the thymus and perhaps bone-marrow.
Resumo:
Background: Atrophy of skeletal muscle in cancer cachexia has been attributed to a tumour-produced highly glycosylated peptide called proteolysis-inducing factor (PIF). The action of PIF is mediated through a high-affinity membrane receptor in muscle. This study investigates the ability of peptides derived from the 20 N-terminal amino acids of the receptor to neutralise PIF action both in vitro and in vivo. Methods: Proteolysis-inducing factor was purified from the MAC16 tumour using an initial pronase digestion, followed by binding on DEAE cellulose, and the pronase was inactivated by heating to 80°C, before purification of the PIF using affinity chromatography. In vitro studies were carried out using C2C12 murine myotubes, while in vivo studies employed mice bearing the cachexia-inducing MAC16 tumour. Results: The process resulted in almost a 23?000-fold purification of PIF, but with a recovery of only 0.004%. Both the D- and L-forms of the 20mer peptide attenuated PIF-induced protein degradation in vitro through the ubiquitin-proteosome proteolytic pathway and increased expression of myosin. In vivo studies showed that neither the D- nor the L-peptides significantly attenuated weight loss, although the D-peptide did show a tendency to increase lean body mass. Conclusion: These results suggest that the peptides may be too hydrophilic to be used as therapeutic agents, but confirm the importance of the receptor in the action of the PIF on muscle protein degradation.
Resumo:
Transgenic BALB/c mice that express intrathyroidal human thyroid stimulating hormone receptor (TSHR) A-subunit, unlike wild-type (WT) littermates, develop thyroid lymphocytic infiltration and spreading to other thyroid autoantigens after T regulatory cell (Treg) depletion and immunization with human thyrotropin receptor (hTSHR) adenovirus. To determine if this process involves intramolecular epitope spreading, we studied antibody and T cell recognition of TSHR ectodomain peptides (A–Z). In transgenic and WT mice, regardless of Treg depletion, TSHR antibodies bound predominantly to N-terminal peptide A and much less to a few downstream peptides. After Treg depletion, splenocytes from WT mice responded to peptides C, D and J (all in the A-subunit), but transgenic splenocytes recognized only peptide D. Because CD4+ T cells are critical for thyroid lymphocytic infiltration, amino acid sequences of these peptides were examined for in silico binding to BALB/c major histocompatibility complex class II (IA–d). High affinity subsequences (inhibitory concentration of 50% < 50 nm) are present in peptides C and D (not J) of the hTSHR and mouse TSHR equivalents. These data probably explain why transgenic splenocytes do not recognize peptide J. Mouse TSHR mRNA levels are comparable in transgenic and WT thyroids, but only transgenics have human A-subunit mRNA. Transgenic mice can present mouse TSHR and human A-subunit-derived peptides. However, WT mice can present only mouse TSHR, and two to four amino acid species differences may preclude recognition by CD4+ T cells activated by hTSHR-adenovirus. Overall, thyroid lymphocytic infiltration in the transgenic mice is unrelated to epitopic spreading but involves human A-subunit peptides for recognition by T cells activated using the hTSHR.
Resumo:
Proteolysis-inducing factor (PIF) induces muscle loss in cancer cachexia through a high affinity membrane bound receptor. This study investigates the mechanism by which the PIF receptor communicates to intracellular signalling pathways. C2C12 murine myoblasts were used as a model using PIF purified from MAC16 tumours. Calcium imaging was determined using fura-4-acetoxymethyl ester (Fura-4-AM). PIF induced a rapid rise in Ca2 +i, which was completely attenuated by a anti-receptor antibody, or peptides representing 20 mers of the N-terminus of the PIF receptor. Other agents catabolic for skeletal muscle including angiotensin II (AngII) tumour necrosis factor-a (TNF-a) and lipopolysaccharide (LPS) also induced a rise in Ca2 +i, but this was not attenuated by anti-PIF-receptor antibody. The rise in Ca2 +i induced by PIF and AngII was completely attenuated by the Zn2 + chelator D-myo-inositol-1,2,6-triphosphate, and this was reversed by administration of exogenous Zn2 +. The Ca2 +i rise induced by PIF was independent of the presence of extracellular Ca2 +, and attenuated by the Ca2 + pump inhibitor thapsigargin, suggesting that the Ca2 +i rise was due to release from intracellular stores. This rise in Ca2 +i induced by PIF was attenuated by both the phospholipase C inhibitor U73122 and 2-APB, an inhibitor of the inositol 1,4,5-triphosphate receptor, suggesting the involvement of a G-protein. Binding of the PIF to its receptor in skeletal muscle triggers a rise in Ca2 +i, which initiates a signalling cascade leading to a depression in protein synthesis, and an increase in protein degradation.
Resumo:
Background and Purpose Receptor activity-modifying proteins (RAMPs) define the pharmacology of the calcitonin receptor-like receptor (CLR). The interactions of the different RAMPs with this class B GPCR yield high-affinity calcitonin gene-related peptide (CGRP) or adrenomedullin (AM) receptors. However, the mechanism for this is unclear. Experimental Approach Guided by receptor models, we mutated residues in the N-terminal helix of CLR, RAMP2 and RAMP3 hypothesized to be involved in peptide interactions. These were assayed for cAMP production with AM, AM2 and CGRP together with their cell surface expression. Binding studies were also conducted for selected mutants. Key Results An important domain for peptide interactions on CLR from I32 to I52 was defined. Although I41 was universally important for binding and receptor function, the role of other residues depended on both ligand and RAMP. Peptide binding to CLR/RAMP3 involved a more restricted range of residues than that to CLR/RAMP1 or CLR/RAMP2. E101 of RAMP2 had a major role in AM interactions, and F111/W84 of RAMP2/3 was important with each peptide. Conclusions and Implications RAMP-dependent effects of CLR mutations suggest that the different RAMPs control accessibility of peptides to binding residues situated on the CLR N-terminus. RAMP3 appears to alter the role of specific residues at the CLR-RAMP interface compared with RAMP1 and RAMP2. © 2013 The Authors. British Journal of Pharmacology published by John Wiley &. Sons Ltd on behalf of The British Pharmacological Society.
Resumo:
Metal-binding polymer fibres have attracted major attention for diverse applications in membranes for metal sequestration from waste waters, non-woven wound dressings, matrices for photocatalysis, and many more. This paper reports the design and synthesis of an 8-hydroxyquinoline-based zinc-binding styrenic monomer, QuiBoc. Its subsequent polymerisation by reversible addition–fragmentation chain transfer (RAFT) yielded well-defined polymers, PQuiBoc, of controllable molar masses (6 and 12 kg mol−1) with low dispersities (Đ, Mw/Mn < 1.3). Protected (PQuiBoc) and deprotected (PQuiOH) derivatives of the polymer exhibited a high zinc-binding capacity, as determined by semi-quantitative SEM/EDXA analyses, allowing the electrospinning of microfibres from a PQuiBoc/polystyrene (PS) blend without the need for removal of the protecting group. Simple “dip-coating” of the fibrous mats into ZnO suspensions showed that PQuiBoc/PS microfibres with only 20% PQuiBoc content had almost three-fold higher loadings of ZnO (29%) in comparison to neat PS microfibres (11%).
Resumo:
Calcitonin (CT) receptors dimerize with receptor activity-modifying proteins (RAMPs) to create high-affinity amylin (AMY) receptors, but there is no reliable means of pharmacologically distinguishing these receptors. We used agonists and antagonists to define their pharmacology, expressing the CT (a) receptor alone or with RAMPs in COS-7 cells and measuring cAMP accumulation. Intermedin short, otherwise known as adrenomedullin 2, mirrored the action of αCGRP, being a weak agonist at CT(a), AMY 2(a), and AMY3(a) receptors but considerably more potent at AMY1(a) receptors. Likewise, the linear calcitonin gene-related peptide (CGRP) analogs (Cys(ACM)2,7)hαCGRP and (Cys(Et) 2,7)haCGRP were only effective at AMY1(a) receptors, but they were partial agonists. As previously observed in COS-7 cells, there was little induction of the AMY2(a) receptor phenotype; thus, AMY 2(a) was not examined further in this study. The antagonist peptide salmon calcitonin8-32 (sCT8-32) did not discriminate strongly between CT and AMY receptors; however, AC187 was a more effective antagonist of AMY responses at AMY receptors, and AC413 additionally showed modest selectivity for AMY1(a) over AMY3(a) receptors. CGRP8-37 also demonstrated receptor-dependent effects. CGRP 8-37 more effectively antagonized AMY at AMY1(a) than AMY3(a) receptors, although it was only a weak antagonist of both, but it did not inhibit responses at the CT(a) receptor. Low CGRP 8-37 affinity and agonism by linear CGRP analogs at AMY 1(a) are the classic signature of a CGRP2 receptor. Our data indicate that careful use of combinations of agonists and antagonists may allow pharmacological discrimination of CT(a), AMY1(a), and AMY3(a) receptors, providing a means to delineate the physiological significance of these receptors. Copyright © 2005 The American Society for Pharmacology and Experimental Therapeutics.
Functional identity of receptors for proteolysis-inducing factor on human and murine skeletal muscle
Resumo:
Background: Cachexia in both mice and humans is associated with tumour production of a sulphated glycoprotein called proteolysis-inducing factor (PIF). In mice PIF binds with high affinity to a surface receptor in skeletal muscle, but little is known about the human receptor. This study compares the human PIF receptor with the murine. Methods: Human PIF was isolated from the G361 melanoma and murine PIF from the MAC16 colon adenocarcinoma. The human PIF receptor was isolated from human skeletal muscle myotubes. Protein synthesis and degradation induced by human and murine PIF was studied in human and murine skeletal muscle myotubes. Results: Both the human and murine PIF receptors showed the same immunoreactivity and Mr 40 000. Both murine and human PIF inhibited total protein synthesis and stimulated protein degradation in human and murine myotubes to about the same extent, and this was attenuated by a rabbit polyclonal antibody to the murine PIF receptor, but not by a non-specific rabbit antibody. Both murine and human PIF increased the activity of the ubiquitin-proteasome pathway in both human and murine myotubes, as evidenced by an increased 'chymotrypsin-like' enzyme activity, protein expression of the 20S and 19S proteasome subunits, and increased expression of the ubiquitin ligases MuRF1 and MAFbx, and this was also attenuated by the anti-mouse PIF receptor antibody. Conclusions: These results suggest that the murine and human PIF receptors are identical. © 2014 Cancer Research UK.
Resumo:
The calcitonin family of peptides comprises calcitonin, amylin two calcitonin gene-related peptides (CGRPs), and adrenomedullin. The first calcitonin receptor was cloned in 1991. Its pharmacology is complicated by the existence of several splice variants. The receptors for the other members the family are made up of subunits. The calcitonin-like receptor (CL receptor) requires a single transmembrane domain protein, termed receptor activity modifying protein, RAMP1, to function as a CGRP receptor. RAMP2 and -3 enable the same CL receptor to behave as an adrenomedullin receptor. Although the calcitonin receptor does not require RAMP to bind and respond to calcitonin, it can associate with the RAMPs, resulting in a series of receptors that typically have high affinity for amylin and varied affinity for CGRP. This review aims to reconcile what is observed when the receptors are reconstituted in vitro with the properties they show in native cells and tissues. Experimental conditions must be rigorously controlled because different degrees of protein expression may markedly modify pharmacology in such a complex situation. Recommendations, which follow International Union of Pharmacology guidelines, are made for the nomenclature of these multimeric receptors.