30 resultados para HEAT EXCHANGER EFFICIENCY


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The last few years have witnessed an unprecedented increase in the price of energy available to industry in the United Kingdom and worldwide. The steel industry, as a major consumer of energy delivered in U.K. (8% of national total and nearly 25% of industrial total) and whose energy costs currently form some 28% of the total manufacturing cost, is very much aware of the need to conserve energy. Because of the complexities of steelmaking processes it is imperative that a full understanding of each process and its interlinking role in an integrated steelworks is understood. An analysis of energy distribution shows that as much as 70% of heat input is dissipated to the environment in a variety of forms. Of these, waste gases offer the best potential for energy conservation. The study identifies areas for and discusses novel methods of energy conservation in each process. Application of these schemes in BSC works is developed and their economic incentives highlighted. A major part of this thesis describes design, development and testing of a novel ceramic rotary regenerator for heat recovery from high temperature waste gases, where no such system is available. The regenerator is a compact, efficient heat exchanger. Application of such a system to a reheating furnace provides a fuel saving of up to 40%. A mathematical model developed is verified on the pilot plant. The results obtained confirm the success of the concept and material selection and outlines the work needed to develop an industrial unit. Last, but not least, the key position of an energy manager in an energy conservation programme is identified and a new Energy Management Model for the BSC is developed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A continuous multi-step synthesis of 1,2-diphenylethane was performed sequentially in a structured compact reactor. This process involved a Heck C-C coupling reaction followed by the addition of hydrogen to perform reduction of the intermediate obtained in the first step. Both of the reactions were catalysed by microspherical carbon-supported Pd catalysts. Due to the integration of the micro-heat exchanger, the static mixer and the mesoscale packed-bed reaction channel, the compact reactor was proven to be an intensified tool for promoting the reactions. In comparison with the batch reactor, this flow process in the compact reactor was more efficient as: (i) the reaction time was significantly reduced (ca. 7 min versus several hours), (ii) no additional ligands were used and (iii) the reaction was run at lower operational pressure and temperature. Pd leached in the Heck reaction step was shown to be effectively recovered in the following hydrogenation reaction section and the catalytic activity of the system can be mostly retained by reverse flow operation. © 2009 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Liquid desiccant cooling systems (LDCS) are energy efficient means of providing cooling, especially when powered by low-grade thermal sources. In this paper, the underlying principles of operation of desiccant cooling systems are examined, and the main components (dehumidifier, evaporative cooler and regenerator) of the LDCS are reviewed. The evaporative cooler can take the form of direct, indirect or semi-indirect. Relative to the direct type, the indirect type is generally less effective. Nonetheless, a certain variant of the indirect type - namely dew-point evaporative cooler - is found to be the most effective amongst all. The dehumidifier and the regenerator can be of the same type of equipment: packed tower and falling film are popular choices, especially when fitted with an internal heat exchanger. The energy requirement of the regenerator can be supplied from solar thermal collectors, of which a solar pond is an interesting option especially when a large scale or storage capability is desired.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This is a study of heat transfer in a lift-off furnace which is employed in the batch annealing of a stack of coils of steel strip. The objective of the project is to investigate the various factors which govern the furnace design and the heat transfer resistances, so as to reduce the time of the annealing cycle, and hence minimize the operating costs. The work involved mathematical modelling of patterns of gas flow and modes of heat transfer. These models are: Heat conduction and its conjectures in the steel coils;Convective heat transfer in the plates separating the coils in the stack and in other parts of the furnace; and Radiative and convective heat transfer in the furnace by using the long furnace model. An important part of the project is the development of numerical methods and computations to solve the transient models. A limited number of temperature measurements was available from experiments on a test coil in an industrial furnace. The mathematical model agreed well with these data. The model has been used to show the following characteristics of annealing furnaces, and to suggest further developments which would lead to significant savings: - The location of the limiting temperature in a coil is nearer to the hollow core than to the outer periphery. - Thermal expansion of the steel tends to open the coils, reduces their thermal conductivity in the radial direction, and hence prolongs the annealing cycle. Increasing the tension in the coils and/or heating from the core would overcome this heat transfer resistance. - The shape and dimensions of the convective channels in the plates have significant effect on heat convection in the stack. An optimal design of a channel is shown to be of a width-to-height ratio equal to 9. - Increasing the cooling rate, by using a fluidized bed instead of the normal shell and tube exchanger, would shorten the cooling time by about 15%, but increase the temperature differential in the stack. - For a specific charge weight, a stack of different-sized coils will have a shorter annealing cycle than one of equally-sized coils, provided that production constraints allow the stacking order to be optimal. - Recycle of hot flue gases to the firing zone of the furnace would produce a. decrease in the thermal efficiency up to 30% but decreases the heating time by about 26%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, the more important parameters of the heat pump system and of solar assisted heat pump systems were analysed in a quantitative way. Ideal and real Rankine cycles applied to the heat pump, with and without subcooling and superheating were studied using practical recommended values for their thermodynamics parameters. Comparative characteristics of refrigerants here analysed looking for their applicability in heat pumps for domestic heating and their effect in the performance of the system. Curves for the variation of the coefficient of performance as a function of condensing and evaporating temperatures were prepared for R12. Air, water and earth as low-grade heat sources and basic heat pump design factors for integrated heat pumps and thermal stores and for solar assisted heat pump-series, parallel and dual-systems were studied. The analysis of the relative performance of these systems demonstrated that the dual system presents advantages in domestic applications. An account of energy requirements for space and hater heating in the domestic sector in the O.K. is presented. The expected primary energy savings by using heat pumps to provide for the heating demand of the domestic sector was found to be of the order of 7%. The availability of solar energy in the U.K. climatic conditions and the characteristics of the solar radiation here studied. Tables and graphical representations in order to calculate the incident solar radiation over a tilted roof were prepared and are given in this study in section IV. In order to analyse and calculate the heating load for the system, new mathematical and graphical relations were developed in section V. A domestic space and water heating system is described and studied. It comprises three main components: a solar radiation absorber, the normal roof of a house, a split heat pump and a thermal store. A mathematical study of the heat exchange characteristics in the roof structure was done. This permits to evaluate the energy collected by the roof acting as a radiation absorber and its efficiency. An indication of the relative contributions from the three low-grade sources: ambient air, solar boost and heat loss from the house to the roof space during operation is given in section VI, together with the average seasonal performance and the energy saving for a prototype system tested at the University of Aston. The seasonal performance as found to be 2.6 and the energy savings by using the system studied 61%. A new store configuration to reduce wasted heat losses is also discussed in section VI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combined Heat and Power (CHP) is the simultaneous generation of usable heat and power in a single process. Despite its obvious advantages in terms of increased efficiency when compared to a single heat or power generation unit, there are a number of technical and economic reasons that have limited their selection. Biomass resources can be, and actually are used as fuel in CHP installations; however several hurdles have to be sorted beforehand, among the most important is the fact that biomass energy sources are not as energy intense as conventional CHP fuels. The ultimate outcome is a limited number of CHP units making use of biomass as fuel. Even fewer CHP units use bioliquids (e.g.: fast pyrolysis biomass liquids, biodiesel and vegetable oil). The Bioliquid-CHP project is carried out by a consortium of seven European and Russian complementary partners, funded by the EU and by the Federal Agency for Science and Innovation of the Russian Federation. The project aim is to develop microturbine and internal combustion engine adaptations in order to adjust these prime movers to bioliquids for CHP applications. This paper will show a summary of the current biomass CHP installations in the UK and the Netherlands, making reference to number of units, capacity, fuel used, the conversion technology involved and the preferred prime movers. The information will give an insight of the current market, with probable future trends and areas where growth could be expected. A similar paper describing the biomass CHP situation in Italy and Russia will be prepared in the near future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the work described here has been to seek methods of narrowing the present gap between currently realised heat pump performance and the theoretical limit. The single most important pre-requisite to this objective is the identification and quantitative assessment of the various non-idealities and degradative phenomena responsible for the present shortfall. The use of availability analysis has been introduced as a diagnostic tool, and applied to a few very simple, highly idealised Rankine cycle optimisation problems. From this work, it has been demonstrated that the scope for improvement through optimisation is small in comparison with the extensive potential for improvement by reducing the compressor's losses. A fully instrumented heat pump was assembled and extensively tested. This furnished performance data, and led to an improved understanding of the systems behaviour. From a very simple analysis of the resulting compressor performance data, confirmation of the compressor's low efficiency was obtained. In addition, in order to obtain experimental data concerning specific details of the heat pump's operation, several novel experiments were performed. The experimental work was concluded with a set of tests which attempted to obtain definitive performance data for a small set of discrete operating conditions. These tests included an investigation of the effect of two compressor modifications. The resulting performance data was analysed by a sophisticated calculation which used that measurements to quantify each dagradative phenomenon occurring in that compressor, and so indicate where the greatest potential for improvement lies. Finally, in the light of everything that was learnt, specific technical suggestions have been made, to reduce the losses associated with both the refrigerant circuit and the compressor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various micro-radial compressor configurations were investigated using one-dimensional meanline and computational fluid dynamics (CFD) techniques for use in a micro gas turbine (MGT) domestic combined heat and power (DCHP) application. Blade backsweep, shaft speed, and blade height were varied at a constant pressure ratio. Shaft speeds were limited to 220 000 r/min, to enable the use of a turbocharger bearing platform. Off-design compressor performance was established and used to determine the MGT performance envelope; this in turn was used to assess potential cost and environmental savings in a heat-led DCHP operating scenario within the target market of a detached family home. A low target-stage pressure ratio provided an opportunity to reduce diffusion within the impeller. Critically for DCHP, this produced very regular flow, which improved impeller performance for a wider operating envelope. The best performing impeller was a low-speed, 170 000 r/min, low-backsweep, 15° configuration producing 71.76 per cent stage efficiency at a pressure ratio of 2.20. This produced an MGT design point system efficiency of 14.85 per cent at 993 W, matching prime movers in the latest commercial DCHP units. Cost and CO2 savings were 10.7 per cent and 6.3 per cent, respectively, for annual power demands of 17.4 MWht and 6.1 MWhe compared to a standard condensing boiler (with grid) installation. The maximum cost saving (on design point) was 14.2 per cent for annual power demands of 22.62 MWht and 6.1 MWhe corresponding to an 8.1 per cent CO2 saving. When sizing, maximum savings were found with larger heat demands. When sized, maximum savings could be made by encouraging more electricity export either by reducing household electricity consumption or by increasing machine efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heat pumps are becoming increasingly popular, but poor electricity generating efficiency limits the potential energy savings of electrically powered units. Thus the work reported in this thesis concerns the development of a range of gas engine driven heat pumps for industrial and commercial heating applications, which recover heat from the prime mover, normally rejected to waste. Despite the convenience of using proprietary engine heat recovery packages, investigations have highlighted the necessity to ensure the engine and the heat recovery equipment are compatible. A problem common •to all air source heat pumps is the formation of frost on the evaporator, which must be removed periodically, with the expenditure of energy, to ensure the continued operation of the plant. An original fluidised bed defrosting mechanism is proposed, which prevents the build-up of this frost, and also improves system performance. Criticisms have been levelled against the rotary sliding vane compressor, in particular the effects of lubrication, which is essential. This thesis compares the rotary sliding vane compressor with other machines, and concludes that many of these criticisms are unfounded. A confidential market survey indicates an increasing demand for heat pumps up to and including 1990, and the technical support needed to penetrate this market is presented. Such support includes the development of a range of modular gas engine driven heat pumps, and a computer aided design for the selection of the optimum units. A case study of a gas engine driven heat pump for a swimming pool application which provided valuable experience is included.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study on heat pump thermodynamic characteristics has been made in the laboratory on a specially designed and instrumented air to water heat pump system. The design, using refrigerant R12, was based on the requirement to produce domestic hot water at a temperature of about 50 °C and was assembled in the laboratory. All the experimental data were fed to a microcomputer and stored on disk automatically from appropriate transducers via amplifier and 16 channel analogue to digital converters. The measurements taken were R12 pressures and temperatures, water and R12 mass flow rates, air speed, fan and compressor input powers, water and air inlet and outlet temperatures, wet and dry bulb temperatures. The time interval between the observations could be varied. The results showed, as expected, that the COP was higher at higher air inlet temperatures and at lower hot water output temperatures. The optimum air speed was found to be at a speed when the fan input power was about 4% of the condenser heat output. It was also found that the hot water can be produced at a temperature higher than the appropriate R12 condensing temperature corresponding to condensing pressure. This was achieved by condenser design to take advantage of discharge superheat and by further heating the water using heat recovery from the compressor. Of the input power to the compressor, typically about 85% was transferred to the refrigerant, 50 % by the compression work and 35% due to the heating of the refrigerant by the cylinder wall, and the remaining 15% (of the input power) was rejected to the cooling medium. The evaporator effectiveness was found to be about 75% and sensitive to the air speed. Using the data collected, a steady state computer model was developed. For given input conditions s air inlet temperature, air speed, the degree of suction superheat , water inlet and outlet temperatures; the model is capable of predicting the refrigerant cycle, compressor efficiency, evaporator effectiveness, condenser water flow rate and system Cop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Faced with a future of rising energy costs there is a need for industry to manage energy more carefully in order to meet its economic objectives. A problem besetting the growth of energy conservation in the UK is that a large proportion of energy consumption is used in a low intensive manner in organisations where they would be responsibility for energy efficiency is spread over a large number of personnel who each see only small energy costs. In relation to this problem in the non-energy intensive industrial sector, an application of an energy management technique known as monitoring and targeting (M & T) has been installed at the Whetstone site of the General Electric Company Limited in an attempt to prove it as a means for motivating line management and personnel to save energy. The objective energy saving for which the M & T was devised is very specific. During early energy conservation work at the site there had been a change from continuous to intermittent heating but the maintenance of the strategy was receiving a poor level of commitment from line management and performance was some 5% - 10% less than expected. The M & T is concerned therefore with heat for space heating for which a heat metering system was required. Metering of the site high pressure hot water system posed technical difficulties and expenditure was also limited. This led to a ‘tin-house' design being installed for a price less than the commercial equivalent. The timespan of work to achieve an operational heat metering system was 3 years which meant that energy saving results from the scheme were not observed during the study. If successful the replication potential is the larger non energy intensive sites from which some 30 PT savings could be expected in the UK.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis records the design and development of an electrically driven, air to water, vapour compression heat pump of nominally 6kW heat output, for residential space heating. The study was carried out on behalf of GEC Research Ltd through the Interdisciplinary Higher Degrees Scheme at Aston University. A computer based mathematical model of the vapour compression cycle was produced as a design aid, to enable the effects of component design changes or variations in operating conditions to be predicted. This model is supported by performance testing of the major components, which revealed that improvements in the compressor isentropic efficiency offer the greatest potential for further increases in cycle COPh. The evaporator was designed from first principles, and is based on wire-wound heat transfer tubing. Two evaporators, of air side area 10.27 and 16.24m2, were tested in a temperature and humidity controlled environment, demonstrating that the benefits of the large coil are greater heat pump heat output and lower noise levels. A systematic study of frost growth rates suggested that this problem is most severe at the conditions of saturated air at 0oC combined with low condenser water temperature. A dynamic simulation model was developed to predict the in-service performance of the heat pump. This study confirmed the importance of an adequate radiator area for heat pump installations. A prototype heat pump was designed and manufactured, consisting of a hermetic reciprocating compressor, a coaxial tube condenser and a helically coiled evaporator, using Refrigerant 22. The prototype was field tested in a domestic environment for one and a half years. The installation included a comprehensive monitoring system. Initial problems were encountered with defrosting and compressor noise, both of which were solved. The unit then operated throughout the 1985/86 heating season without further attention, producing a COPh of 2.34.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drying is an important unit operation in process industry. Results have suggested that the energy used for drying has increased from 12% in 1978 to 18% of the total energy used in 1990. A literature survey of previous studies regarding overall drying energy consumption has demonstrated that there is little continuity of methods and energy trends could not be established. In the ceramics, timber and paper industrial sectors specific energy consumption and energy trends have been investigated by auditing drying equipment. Ceramic products examined have included tableware, tiles, sanitaryware, electrical ceramics, plasterboard, refractories, bricks and abrasives. Data from industry has shown that drying energy has not varied significantly in the ceramics sector over the last decade, representing about 31% of the total energy consumed. Information from the timber industry has established that radical changes have occurred over the last 20 years, both in terms of equipment and energy utilisation. The energy efficiency of hardwood drying has improved by 15% since the 1970s, although no significant savings have been realised for softwood. A survey estimating the energy efficiency and operating characteristics of 192 paper dryer sections has been conducted. Drying energy was found to increase to nearly 60% of the total energy used in the early 1980s, but has fallen over the last decade, representing 23% of the total in 1993. These results have demonstrated that effective energy saving measures, such as improved pressing and heat recovery, have been successfully implemented since the 1970s. Artificial neural networks have successfully been applied to model process characteristics of microwave and convective drying of paper coated gypsum cove. Parameters modelled have included product moisture loss, core gypsum temperature and quality factors relating to paper burning and bubbling defects. Evaluation of thermal and dielectric properties have highlighted gypsum's heat sensitive characteristics in convective and electromagnetic regimes. Modelling experimental data has shown that the networks were capable of simulating drying process characteristics to a high degree of accuracy. Product weight and temperature were predicted to within 0.5% and 5C of the target data respectively. Furthermore, it was demonstrated that the underlying properties of the data could be predicted through a high level of input noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theoretical model for the transport phenomena in an air gap membrane distillation is presented. The model is based on the conservation equations for the mass, momentum, energy and species within the feed water solution as well as on the mass and energy balances on the membrane sides. The slip flow occurs due to the hydrophobic properties of the membrane. The slip boundary condition applied on the feed saline solution-membrane interface is taken into consideration showing its effects on process parameters particularly permeate flow, heat transfer coefficient and thermal efficiency. The theoretical model was validated with available experimental data and was found to be in good agreement especially when the slip condition is introduced. Increasing slip length from zero to 200 μm was found to increase the permeate flux and the thermal efficiency by 33% and 1.7% respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a Cauchy problem for the heat equation, where the temperature field is to be reconstructed from the temperature and heat flux given on a part of the boundary of the solution domain. We employ a Landweber type method proposed in [2], where a sequence of mixed well-posed problems are solved at each iteration step to obtain a stable approximation to the original Cauchy problem. We develop an efficient boundary integral equation method for the numerical solution of these mixed problems, based on the method of Rothe. Numerical examples are presented both with exact and noisy data, showing the efficiency and stability of the proposed procedure and approximations.