25 resultados para Grey Level Co-occurrence Matrix
Resumo:
Discovering who works with whom, on which projects and with which customers is a key task in knowledge management. Although most organizations keep models of organizational structures, these models do not necessarily accurately reflect the reality on the ground. In this paper we present a text mining method called CORDER which first recognizes named entities (NEs) of various types from Web pages, and then discovers relations from a target NE to other NEs which co-occur with it. We evaluated the method on our departmental Website. We used the CORDER method to first find related NEs of four types (organizations, people, projects, and research areas) from Web pages on the Website and then rank them according to their co-occurrence with each of the people in our department. 20 representative people were selected and each of them was presented with ranked lists of each type of NE. Each person specified whether these NEs were related to him/her and changed or confirmed their rankings. Our results indicate that the method can find the NEs with which these people are closely related and provide accurate rankings.
Resumo:
In this paper, we propose a text mining method called LRD (latent relation discovery), which extends the traditional vector space model of document representation in order to improve information retrieval (IR) on documents and document clustering. Our LRD method extracts terms and entities, such as person, organization, or project names, and discovers relationships between them by taking into account their co-occurrence in textual corpora. Given a target entity, LRD discovers other entities closely related to the target effectively and efficiently. With respect to such relatedness, a measure of relation strength between entities is defined. LRD uses relation strength to enhance the vector space model, and uses the enhanced vector space model for query based IR on documents and clustering documents in order to discover complex relationships among terms and entities. Our experiments on a standard dataset for query based IR shows that our LRD method performed significantly better than traditional vector space model and other five standard statistical methods for vector expansion.
Resumo:
We present CORDER (COmmunity Relation Discovery by named Entity Recognition) an un-supervised machine learning algorithm that exploits named entity recognition and co-occurrence data to associate individuals in an organization with their expertise and associates. We discuss the problems associated with evaluating unsupervised learners and report our initial evaluation experiments.
Resumo:
In this thesis we present an overview of sparse approximations of grey level images. The sparse representations are realized by classic, Matching Pursuit (MP) based, greedy selection strategies. One such technique, termed Orthogonal Matching Pursuit (OMP), is shown to be suitable for producing sparse approximations of images, if they are processed in small blocks. When the blocks are enlarged, the proposed Self Projected Matching Pursuit (SPMP) algorithm, successfully renders equivalent results to OMP. A simple coding algorithm is then proposed to store these sparse approximations. This is shown, under certain conditions, to be competitive with JPEG2000 image compression standard. An application termed image folding, which partially secures the approximated images is then proposed. This is extended to produce a self contained folded image, containing all the information required to perform image recovery. Finally a modified OMP selection technique is applied to produce sparse approximations of Red Green Blue (RGB) images. These RGB approximations are then folded with the self contained approach.
Resumo:
OBJECTIVE: To analyze, in a general population sample, clustering of delusional and hallucinatory experiences in relation to environmental exposures and clinical parameters. METHOD: General population-based household surveys of randomly selected adults between 18 and 65 years of age were carried out. SETTING: 52 countries participating in the World Health Organization's World Health Survey were included. PARTICIPANTS: 225 842 subjects (55.6% women), from nationally representative samples, with an individual response rate of 98.5% within households participated. RESULTS: Compared with isolated delusions and hallucinations, co-occurrence of the two phenomena was associated with poorer outcome including worse general health and functioning status (OR = 0.93; 95% CI: 0.92-0.93), greater severity of symptoms (OR = 2.5 95% CI: 2.0-3.0), higher probability of lifetime diagnosis of psychotic disorder (OR = 12.9; 95% CI: 11.5-14.4), lifetime treatment for psychotic disorder (OR = 19.7; 95% CI: 17.3-22.5), and depression during the last 12 months (OR = 11.6; 95% CI: 10.9-12.4). Co-occurrence was also associated with adversity and hearing problems (OR = 2.0; 95% CI: 1.8-2.3). CONCLUSION: The results suggest that the co-occurrence of hallucinations and delusions in populations is not random but instead can be seen, compared with either phenomenon in isolation, as the result of more etiologic loading leading to a more severe clinical state.
Resumo:
Fibronectin (FN) deposition mediated by fibroblasts is an important process in matrix remodeling and wound healing. By monitoring the deposition of soluble biotinylated FN, we show that the stress-induced TG-FN matrix, a matrix complex of tissue transglutaminase (TG2) with its high affinity binding partner FN, can increase both exogenous and cellular FN deposition and also restore it when cell adhesion is interrupted via the presence of RGD-containing peptides. This mechanism does not require the transamidase activity of TG2 but is activated through an RGD-independent adhesion process requiring a heterocomplex of TG2 and FN and is mediated by a syndecan-4 and ß1 integrin co-signaling pathway. By using a5 null cells, ß1 integrin functional blocking antibody, and a a5ß1 integrin targeting peptide A5-1, we demonstrate that the a5 and ß1 integrins are essential for TG-FN to compensate RGD-induced loss of cell adhesion and FN deposition. The importance of syndecan-2 in this process was shown using targeting siRNAs, which abolished the compensation effect of TG-FN on the RGD-induced loss of cell adhesion, resulting in disruption of actin skeleton formation and FN deposition. Unlike syndecan-4, syndecan-2 does not interact directly with TG2 but acts as a downstream effector in regulating actin cytoskeleton organization through the ROCK pathway. We demonstrate that PKCa is likely to be the important link between syndecan-4 and syndecan-2 signaling and that TG2 is the functional component of the TG-FN heterocomplex in mediating cell adhesion via its direct interaction with heparan sulfate chains.
Resumo:
Heterotropic association of tissue transglutaminase (TG2) with extracellular matrix-associated fibronectin (FN) can restore the adhesion of fibroblasts when the integrin-mediated direct binding to FN is impaired using RGD-containing peptide. We demonstrate that the compensatory effect of the TG-FN complex in the presence of RGD-containing peptides is mediated by TG2 binding to the heparan sulfate chains of the syndecan-4 cell surface receptor. This binding mediates activation of protein kinase Ca (PKCa) and its subsequent interaction with ß1 integrin since disruption of PKCa binding to ß1 integrins with a cell-permeant competitive peptide inhibits cell adhesion and the associated actin stress fiber formation. Cell signaling by this process leads to the activation of focal adhesion kinase and ERK1/2 mitogen-activated protein kinases. Fibroblasts deficient in Raf-1 do not respond fully to the TG-FN complex unless either the full-length kinase competent Raf-1 or the kinase-inactive domain of Raf-1 is reintroduced, indicating the involvement of the Raf-1 protein in the signaling mechanism. We propose a model for a novel RGD-independent cell adhesion process that could be important during tissue injury and/or remodeling whereby TG-FN binding to syndecan-4 activates PKCa leading to its association with ß1 integrin, reinforcement of actin-stress fiber organization, and MAPK pathway activation.
Resumo:
The proliferation of data throughout the strategic, tactical and operational areas within many organisations, has provided a need for the decision maker to be presented with structured information that is appropriate for achieving allocated tasks. However, despite this abundance of data, managers at all levels in the organisation commonly encounter a condition of ‘information overload’, that results in a paucity of the correct information. Specifically, this thesis will focus upon the tactical domain within the organisation and the information needs of management who reside at this level. In doing so, it will argue that the link between decision making at the tactical level in the organisation, and low-level transaction processing data, should be through a common object model that used a framework based upon knowledge leveraged from co-ordination theory. In order to achieve this, the Co-ordinated Business Object Model (CBOM) was created. Detailing a two-tier framework, the first tier models data based upon four interactive object models, namely, processes, activities, resources and actors. The second tier analyses the data captured by the four object models, and returns information that can be used to support tactical decision making. In addition, the Co-ordinated Business Object Support System (CBOSS), is a prototype tool that has been developed in order to both support the CBOM implementation, and to also demonstrate the functionality of the CBOM as a modelling approach for supporting tactical management decision making. Containing a graphical user interface, the system’s functionality allows the user to create and explore alternative implementations of an identified tactical level process. In order to validate the CBOM, three verification tests have been completed. The results provide evidence that the CBOM framework helps bridge the gap between low level transaction data, and the information that is used to support tactical level decision making.
Resumo:
We investigate the gradual changes of the microstructure of two blends of high-density polyethylene (HDPE) and polyamide 6 (PA6) at opposite composition filled with increasing amounts of an organomodified clay. The filler locates preferentially inside the polyamide phase, bringing about radical alterations in the micron-scale arrangement of the polymer phases. When the host polyamide represents the major constituent, a sudden reduction of the average sizes of the polyethylene droplets was observed upon addition of even low amounts of organoclay. A morphology refinement was also noticed at low filler contents when the particles distributes inside the minor phase. In this case, however, keep increasing the organoclay content eventually results in a high degree of PA6 phase continuity. Rheological analyses reveal that the filler loading at which the polyamide assembles in a continuous network corresponds to the critical threshold for its rheological transition from a liquid- to a gel-like behaviour, which is indicative of the structuring of the filler inside the host PA6. On the basis of this finding, a schematic mechanism is proposed in which the role of the filler in driving the space arrangement of the polymer phases is discussed. Finally, we show that the synergism between the reinforcing action of the filler and its ability to affect the blend microstructure can be exploited in order to enhance relevant technological properties of the materials, such as their high temperature structural integrity.
Resumo:
Ethylene-propylene diene terpolymer (EPDM) was functionalized with glycidyl methacrylate (GMA) during melt processing by free radical grafting with peroxide initiation in the presence and absence of a reactive comonomer trimethylolpropane triacrylate (Tris). Increasing the peroxide concentration resulted in an increase in the GMA grafting yield, albeit the overall grafting level was low and was accompanied by higher degree of crosslinking of EPDM which was found to be the major competing reaction. The presence of Tris in the grafting system gave rise to higher grafting yield produced at a much lower peroxide concentration though the crosslinking reactions remained high but without the formation of GMA-homopolymer in either of the two systems. The use of these functionalized EPDM (f-EPDM) samples with PET as compatibilisers in binary and ternary blends of PET/EPDM/f-EPDM was evaluated. The influence of the different functionalisation routes of the rubber phase (in presence and absence of Tris) and the effect of the level of functionality and microstructure of the resultant f-EPDM on the extent of the interfacial reaction, morphology and mechanical properties was also investigated. It is suggested that the mechanical properties of the blends are strongly influenced by the performance of the graft copolymer, which is in turn, determined by the level of functionality, molecular structure of the functionalized rubber and the interfacial concentration of the graft copolymer across the interface. The cumulative evidence obtained from torque rheometry, scanning electron microscopy, SEM, dynamic mechanical analysis (DMA), tensile mechanical tests and Fourier transform infrared (FTIR) supports this. It was shown that binary and ternary blends prepared with f-EPDM in the absence of Tris and containing lower levels of g-GMA effected a significant improvement in mechanical properties. This increase, particularly in elongation to break, could be accounted for by the occurrence of a reaction between the epoxy groups of GMA and the hydroxyl/carboxyl end groups of PET that would result in a graft copolymer which could, most probably, preferentially locate at the interface, thereby acting as an 'emulsifier' responsible for decreasing the interfacial tension between the otherwise two immiscible phases. This is supported by results from FTIR analysis of the fractionated PET phase of these blends which confirm the formation of an interfacial reaction, DMA results which show a clear shift in the T s of the blend components and SEM results which reveal very fine morphology, suggesting effective compatibilisation that is concomitant with the improvement observed in their tensile properties. Although Tris has given rise to highest amount of g-GMA, it resulted in lower mechanical properties than the optimized blends produced in the absence of Tris. This was attributed to the difference in the microstructure of the graft and the level of functionality in these samples resulting in less favourable structure responsible for the coarser dispersion of the rubber phase observed by SEM, the lower extent of T shift of the PET phase (DMA), the lower height of the torque curve during reactive blending and FTIR analysis of the separated PET phase that has indicated a lower extent of the interfacial chemical reaction between the phases in this Tris-containing blend sample. © 2005 Elsevier Ltd. All rights reserved.