22 resultados para Gradient Descent method


Relevância:

80.00% 80.00%

Publicador:

Resumo:

An adaptive back-propagation algorithm parameterized by an inverse temperature 1/T is studied and compared with gradient descent (standard back-propagation) for on-line learning in two-layer neural networks with an arbitrary number of hidden units. Within a statistical mechanics framework, we analyse these learning algorithms in both the symmetric and the convergence phase for finite learning rates in the case of uncorrelated teachers of similar but arbitrary length T. These analyses show that adaptive back-propagation results generally in faster training by breaking the symmetry between hidden units more efficiently and by providing faster convergence to optimal generalization than gradient descent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we review recent theoretical approaches for analysing the dynamics of on-line learning in multilayer neural networks using methods adopted from statistical physics. The analysis is based on monitoring a set of macroscopic variables from which the generalisation error can be calculated. A closed set of dynamical equations for the macroscopic variables is derived analytically and solved numerically. The theoretical framework is then employed for defining optimal learning parameters and for analysing the incorporation of second order information into the learning process using natural gradient descent and matrix-momentum based methods. We will also briefly explain an extension of the original framework for analysing the case where training examples are sampled with repetition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Principal component analysis (PCA) is well recognized in dimensionality reduction, and kernel PCA (KPCA) has also been proposed in statistical data analysis. However, KPCA fails to detect the nonlinear structure of data well when outliers exist. To reduce this problem, this paper presents a novel algorithm, named iterative robust KPCA (IRKPCA). IRKPCA works well in dealing with outliers, and can be carried out in an iterative manner, which makes it suitable to process incremental input data. As in the traditional robust PCA (RPCA), a binary field is employed for characterizing the outlier process, and the optimization problem is formulated as maximizing marginal distribution of a Gibbs distribution. In this paper, this optimization problem is solved by stochastic gradient descent techniques. In IRKPCA, the outlier process is in a high-dimensional feature space, and therefore kernel trick is used. IRKPCA can be regarded as a kernelized version of RPCA and a robust form of kernel Hebbian algorithm. Experimental results on synthetic data demonstrate the effectiveness of IRKPCA. © 2010 Taylor & Francis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The problem considered is that of determining the fluid velocity for linear hydrostatics Stokes flow of slow viscous fluids from measured velocity and fluid stress force on a part of the boundary of a bounded domain. A variational conjugate gradient iterative procedure is proposed based on solving a series of mixed well-posed boundary value problems for the Stokes operator and its adjoint. In order to stabilize the Cauchy problem, the iterations are ceased according to an optimal order discrepancy principle stopping criterion. Numerical results obtained using the boundary element method confirm that the procedure produces a convergent and stable numerical solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Cauchy problem for general elliptic second-order linear partial differential equations in which the Dirichlet data in H½(?1 ? ?3) is assumed available on a larger part of the boundary ? of the bounded domain O than the boundary portion ?1 on which the Neumann data is prescribed, is investigated using a conjugate gradient method. We obtain an approximation to the solution of the Cauchy problem by minimizing a certain discrete functional and interpolating using the finite diference or boundary element method. The minimization involves solving equations obtained by discretising mixed boundary value problems for the same operator and its adjoint. It is proved that the solution of the discretised optimization problem converges to the continuous one, as the mesh size tends to zero. Numerical results are presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An increasing number of publications on the dried blood spot (DBS) sampling approach for the quantification of drugs and metabolites have been spurred on by the inherent advantages of this sampling technique. In the present research, a selective and sensitive high-performance liquid chromatography method for the concurrent determination of multiple antiepileptic drugs (AEDs) [levetiracetam (LVT), lamotrigine (LTG), phenobarbital (PHB)], carbamazepine (CBZ) and its active metabolite carbamazepine-10,11 epoxide (CBZE)] in a single DBS has been developed and validated. Whole blood was spotted onto Guthrie cards and dried. Using a standard punch (6 mm diameter), a circular disc was punched from the card and extracted with methanol: acetonitrile (3:1, v/v) containing hexobarbital (Internal Standard) and sonicated prior to evaporation. The extract was then dissolved in water and vortex mixed before undergoing solid phase extraction using HLB cartridges. Chromatographic separation of the AEDs was achieved using Waters XBridge™ C18 column with a gradient system. The developed method was linear over the concentration ranges studied with r ≥ 0.995 for all compounds. The lower limits of quantification (LLOQs) were 2, 1, 2, 0.5 and 1 μg/mL for LVT, LTG, PHB, CBZE and CBZ, respectively. Accuracy (%RE) and precision (%CV) values for within and between day were <20% at the LLOQs and <15% at all other concentrations tested. This method was successfully applied to the analysis of the AEDs in DBS samples taken from children with epilepsy for the assessment of their adherence to prescribed treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inverse problem of determining a spacewise-dependent heat source for the parabolic heat equation using the usual conditions of the direct problem and information from one supplementary temperature measurement at a given instant of time is studied. This spacewise-dependent temperature measurement ensures that this inverse problem has a unique solution, but the solution is unstable and hence the problem is ill-posed. We propose a variational conjugate gradient-type iterative algorithm for the stable reconstruction of the heat source based on a sequence of well-posed direct problems for the parabolic heat equation which are solved at each iteration step using the boundary element method. The instability is overcome by stopping the iterative procedure at the first iteration for which the discrepancy principle is satisfied. Numerical results are presented which have the input measured data perturbed by increasing amounts of random noise. The numerical results show that the proposed procedure yields stable and accurate numerical approximations after only a few iterations.