19 resultados para Glued laminated bamboo
Resumo:
Deformation microstructures in two batches of commercially pure copper (A and B) of allnost similar composition have been studied after rolling reductions from 5% to 95%. X- ray diffraction, optical metallography, scanning electron microscopy in the back-scattered mode, transmission and scanning electron microscopy have been used to examine the deformation microstructure. At low strains (~10 %) the deformation is accommodated by uniform octahedral slip. Microbands that occur as sheet like features usually on the {111} slip planes are formed after 10% reduction. The misorientations between rnicrobonds ond the matrix are usually small (1 - 2° ) and the dislocations within the bands suggest that a single slip system has been operative. The number of microbands increases with strain, they start to cluster and rotate after 60% reduction and, after 90 %, they become almost perfectly aligned with the rolling direction. There were no detectable differences in deformation microstructure between the two materials up to a deformation level of 60% but subsequently, copper B started to develop shear bands which became very profuse by 90% reduction. By contrast, copper A at this stage of deformation developed a smooth laminated structure. This difference in the deformation microstructures has been attributed to traces of unknown impurity in D which inhibit recovery of work hardening. The preferred orientations of both were typical of deformed copper although the presence of shear bands was associated wth a slightly weaker texture. The effects of rolling temperature and grain size on deformation microstructure were also investigated. It was concluded that lowering the rolling temperature or increasing the initial grain size encourages the material to develop shear bands after heavy deformation. Recovery and recrystallization have been studied in both materials during annealing. During recrystallization the growth of new grains showed quite different characteristics in the two cases. Where shear bands were present these acted as nucleation sites and produced a wide spread of recrystallized grain orientations. The resulting annealing textures were very weak. In the absence of shear bands, nucleation occurs by a remarkably long range bulging process which creates the cube orientation and an intensely sharp annealing texture. Cube oriented regions occur in long bands of highly elongated and well recovered cells which contain long range cumulative micorientations. They are transition bands with structural characteristics ideally suited for nucleation of recrystallization. Shear banding inhibits the cube texture both by creating alternative nuclei and by destroying the microstructural features necessary for cube nucleation.
Resumo:
The authors fabricated a demountable Ferrule connector/Physical contact connection between silica fiber and a polymer optical fiber (POF) containing a fiber Bragg grating. The use of a connector for POF grating sensors eliminates the limitations of ultraviolet glued connections and increases the ease with which the devices can be applied to real-world measurement tasks.
Resumo:
Step-index polymer optical fiber Bragg gratings (POFBGs) and microstructured polymer optical fiber Bragg gratings (mPOFBGs) present several attractive features, especially for sensing purposes. In comparison to FBGs written in silica fibers, they are more sensitive to temperature and pressure because of the larger thermo-optic coefficient and smaller Young's modulus of polymer materials. (M)POFBGs are most often photowritten in poly(methylmethacrylate) (PMMA) materials using a continuous-wave 325 nm HeCd laser. For the first time to the best of our knowledge, we study photoinduced birefringence effects in (m)POFBGs. To achieve this, highly reflective gratings were inscribed with the phase mask technique. They were then monitored in transmission with polarized light. For this, (m)POF sections a few cm in length containing the gratings were glued to angled silica fibers. Polarization dependent loss (PDL) and differential group delay (DGD) were computed from the Jones matrix eigenanalysis using an optical vector analyser. Maximum values exceeding several dB and a few picoseconds were obtained for the PDL and DGD, respectively. The response to lateral force was finally investigated. As it induces birefringence in addition to the photo-induced one, an increase of the PDL and DGD values were noticed. © 2014 Copyright SPIE.
Resumo:
The authors fabricated a demountable Ferrule connector/Physical contact connection between silica fiber and a polymer optical fiber (POF) containing a fiber Bragg grating. The use of a connector for POF grating sensors eliminates the limitations of ultraviolet glued connections and increases the ease with which the devices can be applied to real-world measurement tasks. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE).