22 resultados para Glass painting and staining
Resumo:
Scavenging of C- and O-centered free radicals is mandatory in processing stabilization of polypropylene. Phenolic antioxidants act principally as O-radical scavengers only. Aromatic amines, N,N'-disubstituted 1,4-phenylenediamines (PD) and 4,4'disubstituted diphenylamines (DPA), scavenge both C- and O-centered radicals and have consequently a broader activity spectrum. PD cannot be used, however, in polypropylene because of formation of strongly discoloring and staining sacrificial transformation products. Such products formed from DPA have even more discoloring properties. A good processing stability and acceptable extent of discoloration can be achieved by blends of phenols with 4,4'-di-tert.octyl DPA. The effect is considered as a beneficial cooperation between the two chain-breaking antioxidants involving interactions with amine-based transformation products.
Resumo:
The principal objective of this work was to improve the mechanical properties of glass fibre reinforced polypropylene (PP) composites by the mechanochemical modification of the PP. The modification of the PP was carried out by reactive processing of the PP with a modifier in a Buss Ko-Kneader. Two main types of modifier were evaluated one type based on N-substituted maleimides the others based on 2-allylamino-4,6-dichloro-1,3,5-triazine (ACCT). The modification of the PP was carried out in two stages. Firstly the PP was reactively processed with the modifier and a free radical initiator. The objective of this stage was to bind the modifier to the PP. In the second stage the modified PP was reactively processed with the glass fibre. The objective in this stage was to form a chemical bond between the bound modifier and the silane coupling agent on the surface of the glass. Two silane coupling agents were evaluated these had a aliphatic chloro group and an aliphatic amino group respectively available for reaction with the modifier. The modifiers synthesised for this work had two main functional groups. The first was a double bond for free radical addition to the PP. The second was an organic group chosen for its potential reactivity to the silane coupling agent. A preliminary investigation was carried out using maleic anhydride (MA) as the modifier, this is reactive to the amino silane coupled glass. Studies of a commercially available system were also carried out for comparison purposes. During the work it was found that the amino silane coupled glass fibres produced, without any modification being made to the PP, mechanical properties comparable to the commercial system. Further any modification added to the amino silane system failed to improve the mechanical performance and in some cases acted in the opposite fashion. This failure was evident even when a chemical bond between glass fibre and PP could be shown. In the case of the chloro silane coupled glass fibres the mechanical properties of the composite without modification were poorer than those of the commercial system. It was found that the mechanical properties of these systems could be enhanced by the modifiers, however, no system tested significantly out performed the commercial system. Of the two modifier systems tested those based on the n-substituted maleimides were more successful at enhancing mechanical properties than those based on ACCT. This was attributed to the Poor chemical binding of the ACCT based modifiers to the PP. During the work it was found that several of the modifiers improved the properties of the PP when no glass fibres were present, particularly the % elongation and impact strength. It is possible that these modifiers could be used to improve the impact performance of PP, this may be of particular interest in recycling. These modifiers have only been tested for improving the properties of glass fibre composites. The N-substituted maleimide based modifiers could be used as compatibleisers for alloys of PP and other polymers. These could function by the formation of the bond with PP via the double bond whilst the group attached to the nitrogen atom could react with the alloying polymer.
Resumo:
'I'he accurate rreasurement of bed shear stress has been extremely difficult due to its changing values until white propunded a theory which would give constant shear along the bed of a flume. In this investigation a flume has been designed according to White's theory and by two separate methods proven to give constant shearing force along the bed. The first method applied the Hydrogen Bubble Technique to obtain accurate values of velocity thus allowing the velocity profile to be plotted and the momentum at the various test sections to be calculated. The use of a 16 mm Beaulieu movie camera allowed the exact velocity profiles created by the hydrogen bubbles to be recorded whilst an analysing projector gave the means of calculating the exact velocities at the various test sections. Simultaneously Preston's technique of measuring skin friction using Pitot tubes was applied. Twc banks of open ended water manometer were used for recording the static and velocity head pressure drop along the flume. This tvpe of manometer eliminated air locks in the tubes and was found to be sufficiently accurate. Readings of pressure and velocity were taken for various types and diameters of bed material both natural sands and glass spheres and the results tabulated. Graphs of particle Reynolds Number against bed shear stress were plotted and gave a linear relationship which dropped off at high values of Reynolds number. It was found that bed movement occurred instantaneously along the bed of the flume once critical velocity had been reached. On completion of this test a roof curve inappropriate to the bed material was used and then the test repeated. The bed shearing stress was now no longer constant and yet bed movement started instantaneously along the bed of the flume, showing that there are more parameters than critical shear stress to bed movement. It is concluded from the two separate methods applied that the bed shear stress is constant along the bed of the flume.
Resumo:
Background/aims To investigate the efficacy and safety of the MGDRx EyeBag (The Eyebag Company, Halifax, UK) eyelid warming device. Methods Twenty-five patients with confirmed meibomian gland dysfunction (MGD)-related evaporative dry eye were enrolled into a randomised, single masked, contralateral clinical trial. Test eyes received a heated device; control eyes a non-heated device for 5 min twice a day for 2 weeks. Efficacy (ocular symptomology, noninvasive break-up time, lipid layer thickness, osmolarity, meibomian gland dropout and function) and safety (visual acuity, corneal topography, conjunctival hyperaemia and staining) measurements were taken at baseline and follow-up. Subsequent patient device usage and ocular comfort was ascertained at 6 months. Results Differences between test and control eyes at baseline were not statistically signi ficant for all measurements ( p>0.05). After 2 weeks, statistically significant improvements occurred in all efficacy measurements in test eyes ( p<0.05). Visual acuity and corneal topography were unaffected (p>0.05). All patients maintained higher ocular comfort after 6 months ( p<0.05), although the bene fit was greater in those who continued usage 1-8 times a month (p<0.001). Conclusions The MGDRx EyeBag is a safe and effective device for the treatment of MGD-related evaporative dry eye. Subjective benefit lasts at least 6 months, aided by occasional retreatment. Trial registration number NCT01870180.
Resumo:
This paper describes the horizontal deflection behaviour of the streams of particles in paramagnetic fluids under a high-gradient superconducting magnetic field, which is the continued work on the exploration of particle magneto-Archimedes levitation. Based on the previous work on the horizontal deflection of a single particle, a glass box and collector had been designed to observe the movement of particle group in paramagnetic fluids. To get the exact separation efficiency, the method of "sink-float" involved the high density fluid polytungstate (dense medium separation) and MLA (Mineral Liberation Analyser) was performed. It was found that the particles were deflected and settled at certain positions on the container floor due to the combined forces of gravity and magneto-Archimedes forces as well as a lateral buoyancy (displacement) force. Mineral particles with different densities and susceptibilities could be deflected to different positions, thus producing groups of similar types of particles. The work described here, although in its infancy, could form the basis of new approach of separating particles based on a combination of susceptibility and density. © 2014 Elsevier B.V.
Resumo:
Aim: To use previously validated image analysis techniques to determine the incremental nature of printed subjective anterior eye grading scales. Methods: A purpose designed computer program was written to detect edges using a 3 × 3 kernal and to extract colour planes in the selected area of an image. Annunziato and Efron pictorial, and CCLRU and Vistakon-Synoptik photographic grades of bulbar hyperaemia, palpebral hyperaemia roughness, and corneal staining were analysed. Results: The increments of the grading scales were best described by a quadratic rather than a linear function. Edge detection and colour extraction image analysis for bulbar hyperaemia (r2 = 0.35-0.99), palpebral hyperaemia (r2 = 0.71-0.99), palpebral roughness (r2 = 0.30-0.94), and corneal staining (r2 = 0.57-0.99) correlated well with scale grades, although the increments varied in magnitude and direction between different scales. Repeated image analysis measures had a 95% confidence interval of between 0.02 (colour extraction) and 0.10 (edge detection) scale units (on a 0-4 scale). Conclusion: The printed grading scales were more sensitive for grading features of low severity, but grades were not comparable between grading scales. Palpebral hyperaemia and staining grading is complicated by the variable presentations possible. Image analysis techniques are 6-35 times more repeatable than subjective grading, with a sensitivity of 1.2-2.8% of the scale.
Resumo:
Chalcogenide optical fibers are currently undergoing intensive investigation with the aim of exploiting the excellent glass transmission and nonlinear characteristics in the near- and mid-infrared for several applications. Further enhancement of these properties can be obtained, for a particular application, with optical fibers specifically designed that are capable of providing low effective area together with a properly tailored dispersion, matching the characteristics of the laser sources used to excite nonlinear effects. Suspended-core photonic crystal fibers are ideal candidates for nonlinear applications, providing small-core waveguides with large index contrast and tunable dispersion. In this paper, the dispersion properties of As2S3 suspended-core fibers are numerically analyzed, taking into account, for the first time, all the structural parameters, including the size and the number of the glass bridges. The results show that a proper design of the cladding struts can be exploited to significantly change the fiber properties, altering the maximum value of the dispersion parameter and shifting the zero-dispersion wavelengths over a range of 400 nm.