18 resultados para Geometric Function Theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leadership is one of the most examined factors in relation to understanding employee wellbeing and performance. While there are disparate approaches to studying leadership, they share a common assumption that perceptions of a leader's behavior determine reactions to the leader. The concept of leadership perception is poorly understood in most theoretical approaches. To address this, we propose that there are many benefits from examining leadership perceptions as an attitude towards the leader. In this review, we show how research examining a number of aspects of attitudes (content, structure and function) can advance understanding of leadership perceptions and how these affect work-related outcomes. Such a perspective provides a more multi-faceted understanding of leadership perceptions than previously envisaged and this can provide a more detailed understanding of how such perceptions affect outcomes. In addition, we examine some of the main theoretical and methodological implications of viewing leadership perceptions as attitudes to the wider leadership area. The cross-fertilization of research from the attitudes literature to understanding leadership perceptions provides new insights into leadership processes and potential avenues for further research. (C) 2015 Elsevier Inc. All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we summarize our recently proposed work on the information theory analysis of regenerative channels. We discuss how the design and the transfer function properties of the regenerator affect the noise statistics and enable Shannon capacities higher than that of the corresponding linear channels (in the absence of regeneration).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a review of the latest developments in one-dimensional (1D) optical wave turbulence (OWT). Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent waves leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-wave interaction, and that this is the basic mechanism of nonlinear wave coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context. The experimental system is described by two coupled nonlinear equations, which we explore within two wave limits allowing for the expression of the evolution of the complex amplitude in a single dynamical equation. The long-wave limit corresponds to waves with wave numbers smaller than the electrical coherence length of the liquid crystal, and the opposite limit, when wave numbers are larger. We show that both of these systems are of a dual cascade type, analogous to two-dimensional (2D) turbulence, which can be described by wave turbulence (WT) theory, and conclude that the cascades are induced by a six-wave resonant interaction process. WT theory predicts several stationary solutions (non-equilibrium and thermodynamic) to both the long- and short-wave systems, and we investigate the necessary conditions required for their realization. Interestingly, the long-wave system is close to the integrable 1D nonlinear Schrödinger equation (NLSE) (which contains exact nonlinear soliton solutions), and as a result during the inverse cascade, nonlinearity of the system at low wave numbers becomes strong. Subsequently, due to the focusing nature of the nonlinearity, this leads to modulational instability (MI) of the condensate and the formation of solitons. Finally, with the aid of the probability density function (PDF) description of WT theory, we explain the coexistence and mutual interactions between solitons and the weakly nonlinear random wave background in the form of a wave turbulence life cycle (WTLC).