31 resultados para Generalized inverse Gaussian distribution
Resumo:
We explore the dependence of performance measures, such as the generalization error and generalization consistency, on the structure and the parameterization of the prior on `rules', instanced here by the noisy linear perceptron. Using a statistical mechanics framework, we show how one may assign values to the parameters of a model for a `rule' on the basis of data instancing the rule. Information about the data, such as input distribution, noise distribution and other `rule' characteristics may be embedded in the form of general gaussian priors for improving net performance. We examine explicitly two types of general gaussian priors which are useful in some simple cases. We calculate the optimal values for the parameters of these priors and show their effect in modifying the most probable, MAP, values for the rules.
Resumo:
Gaussian processes provide natural non-parametric prior distributions over regression functions. In this paper we consider regression problems where there is noise on the output, and the variance of the noise depends on the inputs. If we assume that the noise is a smooth function of the inputs, then it is natural to model the noise variance using a second Gaussian process, in addition to the Gaussian process governing the noise-free output value. We show that prior uncertainty about the parameters controlling both processes can be handled and that the posterior distribution of the noise rate can be sampled from using Markov chain Monte Carlo methods. Our results on a synthetic data set give a posterior noise variance that well-approximates the true variance.
Resumo:
We consider the problem of assigning an input vector bfx to one of m classes by predicting P(c|bfx) for c = 1, ldots, m. For a two-class problem, the probability of class 1 given bfx is estimated by s(y(bfx)), where s(y) = 1/(1 + e-y). A Gaussian process prior is placed on y(bfx), and is combined with the training data to obtain predictions for new bfx points. We provide a Bayesian treatment, integrating over uncertainty in y and in the parameters that control the Gaussian process prior; the necessary integration over y is carried out using Laplace's approximation. The method is generalized to multi-class problems (m >2) using the softmax function. We demonstrate the effectiveness of the method on a number of datasets.
Resumo:
The ERS-1 Satellite was launched in July 1991 by the European Space Agency into a polar orbit at about km800, carrying a C-band scatterometer. A scatterometer measures the amount of radar back scatter generated by small ripples on the ocean surface induced by instantaneous local winds. Operational methods that extract wind vectors from satellite scatterometer data are based on the local inversion of a forward model, mapping scatterometer observations to wind vectors, by the minimisation of a cost function in the scatterometer measurement space.par This report uses mixture density networks, a principled method for modelling conditional probability density functions, to model the joint probability distribution of the wind vectors given the satellite scatterometer measurements in a single cell (the `inverse' problem). The complexity of the mapping and the structure of the conditional probability density function are investigated by varying the number of units in the hidden layer of the multi-layer perceptron and the number of kernels in the Gaussian mixture model of the mixture density network respectively. The optimal model for networks trained per trace has twenty hidden units and four kernels. Further investigation shows that models trained with incidence angle as an input have results comparable to those models trained by trace. A hybrid mixture density network that incorporates geophysical knowledge of the problem confirms other results that the conditional probability distribution is dominantly bimodal.par The wind retrieval results improve on previous work at Aston, but do not match other neural network techniques that use spatial information in the inputs, which is to be expected given the ambiguity of the inverse problem. Current work uses the local inverse model for autonomous ambiguity removal in a principled Bayesian framework. Future directions in which these models may be improved are given.
Resumo:
Based on a simple convexity lemma, we develop bounds for different types of Bayesian prediction errors for regression with Gaussian processes. The basic bounds are formulated for a fixed training set. Simpler expressions are obtained for sampling from an input distribution which equals the weight function of the covariance kernel, yielding asymptotically tight results. The results are compared with numerical experiments.
Resumo:
We discuss the Application of TAP mean field methods known from Statistical Mechanics of disordered systems to Bayesian classification with Gaussian processes. In contrast to previous applications, no knowledge about the distribution of inputs is needed. Simulation results for the Sonar data set are given.
Resumo:
Based on a statistical mechanics approach, we develop a method for approximately computing average case learning curves and their sample fluctuations for Gaussian process regression models. We give examples for the Wiener process and show that universal relations (that are independent of the input distribution) between error measures can be derived.
Resumo:
This paper presents a general methodology for estimating and incorporating uncertainty in the controller and forward models for noisy nonlinear control problems. Conditional distribution modeling in a neural network context is used to estimate uncertainty around the prediction of neural network outputs. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localize the possible control solutions to consider. A nonlinear multivariable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non Gaussian distributions of control signal as well as processes with hysteresis.
Resumo:
Visual evoked magnetic responses were recorded to full-field and left and right half-field stimulation with three check sizes (70′, 34′ and 22′) in five normal subjects. Recordings were made sequentially on a 20-position grid (4 × 5) based on the inion, by means of a single-channel direct current-Superconducting Quantum Interference Device second-order gradiometer. The topographic maps were consistent on the same subjects recorded 2 months apart. The half-field responses produced the strongest signals in the contralateral hemisphere and were consistent with the cruciform model of the calcarine fissure. Right half fields produced upper-left-quadrant outgoing fields and lower-left-quadrant ingoing fields, while the left half field produced the opposite response. The topographic maps also varied with check size, with the larger checks producing positive or negative maximum position more anteriorly than small checks. In addition, with large checks the full-field responses could be explained as the summation of the two half fields, whereas full-field responses to smaller checks were more unpredictable and may be due to sources located at the occipital pole or lateral surface. In addition, dipole sources were located as appropriate with the use of inverse problem solutions. Topographic data will be vital to the clinical use of the visual evoked field but, in addition, provides complementary information to visual evoked potentials, allowing detailed studies of the visual cortex. © 1992 Kluwer Academic Publishers.
Resumo:
We consider the problem of assigning an input vector to one of m classes by predicting P(c|x) for c=1,...,m. For a two-class problem, the probability of class one given x is estimated by s(y(x)), where s(y)=1/(1+e-y). A Gaussian process prior is placed on y(x), and is combined with the training data to obtain predictions for new x points. We provide a Bayesian treatment, integrating over uncertainty in y and in the parameters that control the Gaussian process prior the necessary integration over y is carried out using Laplace's approximation. The method is generalized to multiclass problems (m>2) using the softmax function. We demonstrate the effectiveness of the method on a number of datasets.
Resumo:
Magnetoencephalography (MEG) is a non-invasive brain imaging technique with the potential for very high temporal and spatial resolution of neuronal activity. The main stumbling block for the technique has been that the estimation of a neuronal current distribution, based on sensor data outside the head, is an inverse problem with an infinity of possible solutions. Many inversion techniques exist, all using different a-priori assumptions in order to reduce the number of possible solutions. Although all techniques can be thoroughly tested in simulation, implicit in the simulations are the experimenter's own assumptions about realistic brain function. To date, the only way to test the validity of inversions based on real MEG data has been through direct surgical validation, or through comparison with invasive primate data. In this work, we constructed a null hypothesis that the reconstruction of neuronal activity contains no information on the distribution of the cortical grey matter. To test this, we repeatedly compared rotated sections of grey matter with a beamformer estimate of neuronal activity to generate a distribution of mutual information values. The significance of the comparison between the un-rotated anatomical information and the electrical estimate was subsequently assessed against this distribution. We found that there was significant (P < 0.05) anatomical information contained in the beamformer images across a number of frequency bands. Based on the limited data presented here, we can say that the assumptions behind the beamformer algorithm are not unreasonable for the visual-motor task investigated.
Resumo:
The dynamics of the non-equilibrium Ising model with parallel updates is investigated using a generalized mean field approximation that incorporates multiple two-site correlations at any two time steps, which can be obtained recursively. The proposed method shows significant improvement in predicting local system properties compared to other mean field approximation techniques, particularly in systems with symmetric interactions. Results are also evaluated against those obtained from Monte Carlo simulations. The method is also employed to obtain parameter values for the kinetic inverse Ising modeling problem, where couplings and local field values of a fully connected spin system are inferred from data. © 2014 IOP Publishing Ltd and SISSA Medialab srl.
Resumo:
We find the probability distribution of the fluctuating parameters of a soliton propagating through a medium with additive noise. Our method is a modification of the instanton formalism (method of optimal fluctuation) based on a saddle-point approximation in the path integral. We first solve consistently a fundamental problem of soliton propagation within the framework of noisy nonlinear Schrödinger equation. We then consider model modifications due to in-line (filtering, amplitude and phase modulation) control. It is examined how control elements change the error probability in optical soliton transmission. Even though a weak noise is considered, we are interested here in probabilities of error-causing large fluctuations which are beyond perturbation theory. We describe in detail a new phenomenon of soliton collapse that occurs under the combined action of noise, filtering and amplitude modulation. © 2004 Elsevier B.V. All rights reserved.
Resumo:
The inverse controller is traditionally assumed to be a deterministic function. This paper presents a pedagogical methodology for estimating the stochastic model of the inverse controller. The proposed method is based on Bayes' theorem. Using Bayes' rule to obtain the stochastic model of the inverse controller allows the use of knowledge of uncertainty from both the inverse and the forward model in estimating the optimal control signal. The paper presents the methodology for general nonlinear systems. For illustration purposes, the proposed methodology is applied to linear Gaussian systems. © 2004 IEEE.
Resumo:
An important group of nonlinear processes in optical fibre involve the mixing of four waves due to the intensity dependence of the refractive index. It is customary to distinguish between nonlinear effects that require external/pumping waves (cross-phase modulation and parametric processes such as four-wave mixing) and those arising from self-action of the propagating optical field (self-phase modulation and modulation instability). Here, we present a new nonlinear self-action effect—self-parametric amplification—which manifests itself as optical spectrum narrowing in normal dispersion fibre, leading to very stable propagation with a distinctive spectral distribution. The narrowing results from inverse four-wave mixing, resembling an effective parametric amplification of the central part of the spectrum by energy transfer from the spectral tails. Self-parametric amplification and the observed stable nonlinear spectral propagation with a random temporal waveform can find applications in optical communications and high-power fibre lasers with nonlinear intracavity dynamics.