17 resultados para Gene Therapy -- methods


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of novel, affordable and efficacious therapeutics will be necessary to ensure the continued progression in the standard of global healthcare. With the potential to address previously unmet patient needs as well as tackling the social and economic effects of chronic and age-related conditions, cell therapies will lead the new generation of healthcare products set to improve health and wealth across the globe. However, if many of the small to medium enterprises (SMEs) engaged in much of the commercialization efforts are to successfully traverse the ‘Valley of Death’ as they progress through clinical trials, there are a number of challenges that must be overcome. No longer do the challenges remain biological but rather a series of engineering and manufacturing issues must also be considered and addressed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background Embryonic stem (ES) cells have the potential to produce unlimited numbers of surrogate insulin-producing cells for cell replacement therapy of type I diabetes mellitus. The impact of the in vivo environment on mouse ES cell differentiation towards insulin-producing cells was analysed morphologically after implantation. Methods ES cells differentiated in vitro into insulin-producing cells according to the Lumelsky protocol or a new four-stage differentiation protocol were analysed morphologically before and after implantation for gene expression by in situ reverse transcription polymerase chain reaction and protein expression by immunohistochemistry and ultrastructural analysis. Results In comparison with nestin positive ES cells developed according to the reference protocol, the number of ES cells differentiated with the four-stage protocol increased under in vivo conditions upon morphological analysis. The cells exhibited, in comparison to the in vitro situation, increased gene and protein expression of Pdx1, insulin, islet amyloid polypeptide (IAPP), the GLUT2 glucose transporter and glucokinase, which are functional markers for glucose-induced insulin secretion of pancreatic beta cells. Renal sub-capsular implantation of ES cells with a higher degree of differentiation achieved by in vitro differentiation with a four-stage protocol enabled further significant maturation for the beta-cell-specific markers, insulin and the co-stored IAPP as well as the glucose recognition structures. in contrast, further in vivo differentiation was not achieved with cells differentiated in vitro by the reference protocol. Conclusions A sufficient degree of in vitro differentiation is an essential prerequisite for further substantial maturation in a beta-cell-specific way in vivo, supported by cell-cell contacts and vascularisation. Copyright (c) 2009 John Wiley & Sons, Ltd.