73 resultados para Gene Delivery-systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Product Service Systems, servitization, and Service Science literature continues to grow as organisations seek to protect and improve their competitive position. The potential of technology applications to deliver service delivery systems facilitated by the ability to make real time decisions based upon ‘in the field’ performance is also significant. Research identifies four key questions to be addressed. Namely: how far along the servitization continuum should the organisation go in a single strategic step? Does the organisation have the structure and infrastructure to support this transition? What level of condition monitoring should it employ? Is the product positioned correctly in the value chain to adopt condition monitoring technology? Strategy consists of three dimensions, namely content, context, and process. The literature relating to PSS, servitization, and strategy all discuss the concepts relative to content and context but none offer a process to deliver an aligned strategy to deliver a service delivery system enabled by condition based management. This paper presents a tested iterative strategy formulation methodology which is the result of a structured development programme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spray-drying is an effective process for preparing micron-dimensioned particles for pulmonary delivery. Previously, we have demonstrated enhanced dispersibility and fine particle fraction of spray-dried nonviral gene delivery formulations using amino acids or absorption enhancers as dispersibility-enhancing excipients. In this study, we investigate the use of the cationic polymer chitosan as a readily available and biocompatible dispersibility enhancer. Lactose-lipid:polycation:pDNA (LPD) powders were prepared by spray-drying and post-mixed with chitosan or spray-dried chitosan. In addition, the water-soluble chitosan derivative, trimethyl chitosan, was added to the lactose-LPD formulation before spray-drying. Spray-dried chitosan particles, displaying an irregular surface morphology and diameter of less than 2 mu m, readily adsorbed to lactose-LPD particles following mixing. In contrast with the smooth spherical surface of lactose-LPD particles, spray-dried trimethyl chitosan-lactose-LPD particles demonstrated increased surface roughness and a unimodal particle size distribution (mean diameter 3.4 mu m), compared with the multimodal distribution for unmodified lactose-LPD powders (mean diameter 23.7 mu m). The emitted dose and in vitro deposition of chitosan-modified powders was significantly greater than that of unmodified powders. Moreover, the inclusion of chitosan mediated an enhanced level of reporter gene expression. In summary, chitosan enhances the dispersibility and in vitro pulmonary deposition performance of spray-dried powders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The resolution of inflammation is dependent on recognition and phagocytic removal of apoptotic cells by macrophages. Receptors for apoptotic cells are sensitive to degradation by human neutrophil elastase (HNE). We show in the present study that HNE cleaves macrophage cell surface CD14 and in so doing, reduces phagocytic recognition of apoptotic lymphocytic cells (Mutu 1). Using an improved method of adenovirus-mediated transfection of macrophages with the HNE inbibitor elafin, we demonstrate that elafin overexpression prevents CD14 cleavage and restores apoptotic cell recognition by macrophages. This approach of genetic modification of macrophages could be used to restore apoptotic cell recognition in inflammatory conditions. (C) 2004 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The poor retention and efficacy of instilled drops as a means of delivering drugs to the ophthalmic environment is well-recognised. The potential value of contact lenses as a means of ophthalmic drug delivery, and consequent improvement of pre-corneal retention is one obvious route to the development of a more effective ocular delivery system. Furthermore, the increasing availability and clinical use of daily disposable contact lenses provides the platform for the development of viable single-day use drug delivery devices based on existing materials and lenses. In order to provide a basis for the effective design of such devices, a systematic understanding of the factors affecting the interaction of individual drugs with the lens matrix is required. Because a large number of potential structural variables are involved, it is necessary to achieve some rationalisation of the parameters and physicochemical properties (such as molecular weight, charge, partition coefficients) that influence drug interactions. Ophthalmic dyes and structurally related compounds based on the same core structure were used to investigate these various factors and the way in which they can be used in concert to design effective release systems for structurally different drugs. Initial studies of passive diffusional release form a necessary precursor to the investigation of the features of the ocular environment that over-ride this simple behaviour. Commercially available contact lenses of differing structural classifications were used to study factors affecting the uptake of the surrogate actives and their release under 'passive' conditions. The interaction between active and lens material shows considerable and complex structure dependence, which is not simply related to equilibrium water content. The structure of the polymer matrix itself was found to have the dominant controlling influence on active uptake; hydrophobic interaction with the ophthalmic dye playing a major role. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spinal cord injury is a complex pathology often resulting in functional impairment and paralysis. Gene therapy has emerged as a possible solution to the problems of limited neural tissue regeneration through the administration of factors promoting axonal growth, while also offering long-term local delivery of therapeutic molecules at the injury site. Of note, gene therapy is our response to the requirements of neural and glial cells following spinal cord injury, providing, in a time-dependent manner, growth substances for axonal regeneration and eliminating axonal growth inhibitors. Herein, we explore different gene therapy strategies, including targeting gene expression to modulate the presence of neurotrophic growth or survival factors and increase neural tissue plasticity. Special attention is given to describing advances in viral and non-viral gene delivery systems, as well as the available routes of gene delivery. Finally, we discuss the future of combinatorial gene therapies and give consideration to the implementation of gene therapy in humans. © 2014 Future Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study identifies and investigates the potential use of in-eye trigger mechanisms to supplement the widely available information on release of ophthalmic drugs from contact lenses under passive release conditions. Ophthalmic dyes and surrogates have been successfully employed to investigate how these factors can be drawn together to make a successful system. The storage of a drug-containing lens in a pH lower than that of the ocular environment can be used to establish an equilibrium that favours retention of the drug in the lens prior to ocular insertion. Although release under passive conditions does not result in complete dye elution, the use of mechanical agitation techniques which mimic the eyelid blink action in conjunction with ocular tear chemistry promotes further release. In this way differentiation between passive and triggered in vitro release characteristics can be established. Investigation of the role of individual tear proteins revealed significant differences in their ability to alter the equilibrium between matrix-held and eluate-held dye or drug. These individual experiments were then investigated in vivo using ophthalmic dyes. Complete elution was found to be achievable in-eye; this demonstrated the importance of that fraction of the drug retained under passive conditions and the triggering effect of in-eye conditions on the release process. Understanding both the structure-property relationship between drug and material and in-eye trigger mechanisms, using ophthalmic dyes as a surrogate, provides the basis of knowledge necessary to design ocular drug delivery vehicles for in-eye release in a controllable manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design and synthesis of safe and efficient nonviral vectors for gene delivery has attracted significant attention in recent years. Previous experiments have revealed that the charge density of a polycation (the carrier) plays a crucial role in complexation and the release of the gene from the complex in the cytosol. In this work, we adopt an atomistic molecular dynamics simulation approach to study the complexation of short strand duplex RNA with six cationic carrier systems of varying charge and surface topology. The simulations reveal detailed molecular-level pictures of the structures and dynamics of the RNA-polycation complexes. Estimates for the binding free energy indicate that electrostatic contributions are dominant followed by van der Waals interactions. The binding free energy between the 8(+)polymers and the RNA is found to be larger than that of the 4(+)polymers, in general agreement with previously published data. Because reliable binding free energies provide an effective index of the ability of the polycationic carrier to bind the nucleic acid and also carry implications for the process of gene release within the cytosol, these novel simulations have the potential to provide us with a much better understanding of key mechanistic aspects of gene-polycation complexation and thereby advance the rational design of nonviral gene delivery systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the molecular mechanism of gene condensation is a key component to rationalizing gene delivery phenomena, including functional properties such as the stability of the gene-vector complex and the intracellular release of the gene. In this work, we adopt an atomistic molecular dynamics simulation approach to study the complexation of short strand duplex RNA with four cationic carrier systems of varying charge and surface topology at different charge ratios. At lower charge ratios, polymers bind quite effectively to siRNA, while at high charge ratios, the complexes are saturated and there are free polymers that are unable to associate with RNA. We also observed reduced fluctuations in RNA structures when complexed with multiple polymers in solution as compared to both free siRNA in water and the single polymer complexes. These novel simulations provide a much better understanding of key mechanistic aspects of gene-polycation complexation and thereby advance progress toward rational design of nonviral gene delivery systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intracellular degradation of genes, most notably within the endo-lysosomal compartment is considered a significant barrier to (non-viral) gene delivery in vivo. Previous reports based on in vitro studies claim that carriers possessing a mixture of primary, secondary and tertiary amines are able to buffer the acidic environment within the endosome, allowing for timely release of their contents, leading to higher transfection rates. In this report, we adopt an atomistic molecular dynamics (MD) simulation approach, comparing the complexation of 21-bp siRNA with low-generation polyamidoamine (PAMAM) dendrimers (G0 and G1) at both neutral and acidic pHs, the latter of which mimics the degradative environment within maturing 'late-endosomes'. Our simulations reveal that the time taken for the dendrimer-gene complex (dendriplex) to reach equilibrium is appreciably longer at low pH and this is accompanied by more compact packaging of the dendriplex, as compared to simulations performed at neutral pH. We also note larger absolute values of calculated binding free energies of the dendriplex at low pH, indicating a higher dendrimer-nucleic acid affinity in comparison with neutral pH. These novel simulations provide a more detailed understanding of low molecular-weight polymer-siRNA behavior, mimicking the endosomal environment and provide input of direct relevance to the "proton sponge theory", thereby advancing the rational design of non-viral gene delivery systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antisense technology is a novel drug discovery method, which provides an essential tool for directly using gene sequence information to rationally design specific inhibitions of mRNA, to treat a wide range of diseases. The efficacy of naked oligodeoxynucleotides (ODNs) is relatively short lived due to rapid degradation in vivo. The entrapment of ODNs within biodegradable sustained-release delivery systems may improve ODN stability and reduce dose required for efficacy. Biodegradable polymer microspheres were evaluated as delivery devices for ODNs and ribozymes. Poly(lactide-co-glycolide) polymers were used due to their biocompatibility and non toxic degradation products. Microspheres were prepared using a double emulsion-deposition method and the formulations characterised. In vitro release profiles were characterised by an initial burst effect during the first 48 hours of release followed by a more sustained release. The release profiles were influenced by microsphere size, copolymer molecular weight, copolymer ratio, ODN loading, ODN length, and ODN chemistry. The serum stability of ODNs was significantly improved when entrapped within polymer microspheres. The cellular association of ODNs entrapped within small spheres (1-2μm) was improved by approximately 20-fold in A431 carcinoma cells compared with free ODNs. Fluorescence microscopy studies showed a more diffuse subcellular distribution when delivered as a microsphere formulation compared with free ODNs, which exhibited the characteristic punctate periplasmic distribution. For in vivo evaluation, polymer microspheres containing fluorescently-labelled ODNs were stereo-taxically administered to the neostriatum of the rat brain. Free ODN resulted in a punctate cellular distribution after 24 hours. In comparison ODN delivered using polymer microspheres were intensely visible in cells 48 hours post administration, and fluorescence appeared to be diffuse covering both cytosolic and nuclear regions. Whole-body autoradiography was also used to evaluate the biodistribution of free tritium labelled ODN and ODN entrapped microspheres, following subcutaneous administration to Balb-C mice. Polymer entrapped ODN gave a similar biodistribution to free ODN. Free ODN was distributed within 24 hours, whereas polymer released ODN was observed still presented in organs and at the site of administration seven days post administration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we have established the efficient mucosal delivery of vaccines using absorption enhancers and chitosan. In addition, the use of chitosan was shown to enhance the action of other known adjuvants, such as CTB or Quil-A. Collectively, the results presented herein indicate that chitosan has excellent potential as a mucosal adjuvant. We have evaluated a number of absorption enhancers for their adjuvant activity in vivo. Polyornithine was shown to engender high scrum immune reasons to nasally delivered antigens, with higher molecular weight polyornithine facilitating the best results. We have demonstrated for the first time that vitamin E TPGS can act as mucosal adjuvant. Deoxycholic acid, cyclodextrins and acylcarnitines were also identified as effective mucosal adjuvants and showed enhanced immune responses to nasally delivered TT, DT and Yersinia pestis V and F1 antigens. Previously, none of these agents, common in their action as absorption enhancing agents, have been shown to have immunopotentiating activity for mucosal immunisation. We have successfully developed novel surface modified microspheres using chitosan as an emulsion stabiliser during the preparation of PLA microspheres. It was found that immune responses could be substantially increased, effectively exploiting the immunopenetrating characteristics of both chitosan and PLA microspheres in the same delivery vehicle. In the same study, comparison of intranasal and intramuscular routes of administration showed that with these formulations, the nasal route could be as effective as intramuscular delivery, highlighting the potential of mucosal administration for these particulate delivery systems. Chitosan was co-administered with polymer microspheres. It was demonstrated that this strategy facilitates markedly enhanced immune responses in both magnitude and duration following intramuscular administration. We conclude that this combination shows potential for single dose administration of vaccines. In another study, we have shown that the addition of chitosan to alum adsorbed TT was able to enhance immune responses. PLA micro/nanospheres were prepared and characterised with discreet particle size ranges. A smaller particle size was shown to facilitate higher scrum IgG responses following nasal administration. A lower antigen loading was additionally identified as being preferential for the induction of immune responses in combination with the smaller particle size. This may be due to the fact that the number of particles will be increased when antigen loading is low, which may in turn facilitate a more widespread uptake of particles. PLA lamellar particles were prepared and characterised. Adsorbed TT was evaluated for the potential to engender immune responses in vivo. These formulations were shown to generate effective immune responses following intramuscular administration. Positively charged polyethylcyanoacrylate and PLA nanoparticies were designed and characterised and their potential as delivery vehicles for DNA vaccines was investigated. Successful preparation of particles with narrow size distribution and positive surface charge (imparted by the inclusion of chitosan) was achieved. In the evaluation of antibody responses to DNA encoded antigen in the presence of alum administered intranasally, discrimination between the groups was only seen following intramuscular boosting with the corresponding protein. Our study showed that DNA vaccines in the presence of either alum or Quil-A may advantageously influence priming of the immune system by a mucosal route. The potential for the combination of adjuvants, Quil-A and chitosan, to enhance antibody responses to plasmid encoded antigen co-administered with the corresponding protein antigen was shown and this is worthy of further investigation. The findings here have identified novel adjuvants and approaches to vaccine delivery. In particular, chitosan or vitamin E TPGS are shown here to have considerable promise as non-toxic, safe mucosal adjuvants. In addition, biodegradable mucoadhesive delivery systems, surface modified with chitosan in a single step process, may have application for other uses such as drug and gene delivery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antisense oligonucleotides (AODNs) can selectively inhibit individual gene expression by binding specifically to rnRNA. The over-expression of the epidermal growth factor receptor (EGFR) has been observed in human breast and glioblastoma tumours and therefore AODNs designed to target the EGFR would be a logical approach to treat such tumours. However, poor pharmacokinetic/pharmacodynamic and cellular uptake properties of AODNs have limited their potential to become successful therapeutic agents. Biodegradable polymeric poly (lactide-co-glycolide) (P(LA-GA)) and dendrimer delivery systems may allow us to overcome these problems. The use of combination therapy of AODNs and cytotoxic agents such as 5-fluorouracil (5-FU) in biodegradable polymeric formulations may further improve therapeutic efficacy. AODN and 5-FU were either co-entrapped in a single microsphere formulation or individually entrapped in two separate microsphere formulations (double emulsion method) and release profiles determined in vitro. The release rates (biphasic) of the two agents were significantly slower when co-entrapped as a single microsphere formulation compared to those obtained with the separate formulations. Sustained release over 35 days was observed in both types of formulation. Naked and microsphere-loaded AODN and 5-FU (in separate formulations) were tested on an A431 vulval carcinoma cell line. Combining naked or encapsulated drugs produced a greater reduction in viable cell number as compared with either agent alone. However, controls and Western blotting indicated that non-sequence specific cytotoxic effects were responsible for the differences in viable cell number. The uptake properties of an anionic dendrimer based on a pentaerythritol structure covalently linked to AODNs (targeting the EGFR) have been characterised. The cellular uptake of AODN linked to the dendrimer was up to 3.5-fold higher in A431 cells as compared to naked AODN. Mechanistic studies suggested that receptor-mediated and adsorptive (binding protein-mediated) endocytosis were the predominant uptake mechanisms for the dendrimer-AODN. RNase H cleavage assay suggested that the dendrimer-AODN was able to bind and cleave the target site. A reduction of 20%, 28% and 45% in EGFR expression was observed with 0.05μM, 0.1μM and 0.5μM dendrimer-AODN treatments respectively with a reduction in viable cell number. These results indicated that the dendrimer delivery system may reduce viable cell number by an antisense specific mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

STUDY DESIGN: The twy/twy mouse undergoes spontaneous chronic mechanical compression of the spinal cord; this in vivo model system was used to examine the effects of retrograde adenovirus (adenoviral vector [AdV])-mediated brain-derived neurotrophic factor (BDNF) gene delivery to spinal neural cells. OBJECTIVE: To investigate the targeting and potential neuroprotective effect of retrograde AdV-mediated BDNF gene transfection in the chronically compressed spinal cord in terms of prevention of apoptosis of neurons and oligodendrocytes. SUMMARY OF BACKGROUND DATA: Several studies have investigated the neuroprotective effects of neurotrophins, including BDNF, in spinal cord injury. However, no report has described the effects of retrograde neurotrophic factor gene delivery in compressed spinal cords, including gene targeting and the potential to prevent neural cell apoptosis. METHODS: AdV-BDNF or AdV-LacZ (as a control gene) was injected into the bilateral sternomastoid muscles of 18-week old twy/twy mice for retrograde gene delivery via the spinal accessory motor neurons. Heterozygous Institute of Cancer Research mice (+/twy), which do not undergo spontaneous spinal compression, were used as a control for the effects of such compression on gene delivery. The localization and cell specificity of ß-galactosidase expression (produced by LacZ gene transfection) and BDNF expression in the spinal cord were examined by coimmunofluorescence staining for neural cell markers (NeuN, neurons; reactive immunology protein, oligodendrocytes; glial fibrillary acidic protein, astrocytes; OX-42, microglia) 4 weeks after gene injection. The possible neuroprotection afforded by retrograde AdV-BDNF gene delivery versus AdV-LacZ-transfected control mice was assessed by scoring the prevalence of apoptotic cells (terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells) and immunoreactivity to active caspases -3, -8, and -9, p75, neurofilament 200 kD (NF), and for the oligodendroglial progenitor marker, NG2. RESULTS.: Four weeks after injection, the retrograde delivery of the LacZ marker gene was identified in cervical spinal neurons and some glial cells, including oligodendrocytes in the white matter of the spinal cord, in both the twy/twy mouse and the heterozygous Institute of Cancer Research mouse (+/twy). In the compressed spinal cord of twy/twy mouse, AdV-BDNF gene transfection resulted in a significant decrease in the number of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells present in the spinal cord and a downregulation in the caspase apoptotic pathway compared with AdV-LacZ (control) gene transfection. There was a marked and significant increase in the areas of the spinal cord of AdV-BDNF-injected mice that were NF- and NG2-immunopositive compared with AdV-LacZ-injected mice, indicating the increased presence of neurons and oligodendrocytes in response to BDNF transfection. CONCLUSION: Our results demonstrate that targeted retrograde BDNF gene delivery suppresses apoptosis in neurons and oligodendrocytes in the chronically compressed spinal cord of twy/twy mouse. Further work is required to establish whether this method of gene delivery may provide neuroprotective effects in other situations of compressive spinal cord injury.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biodegradable poly(dl-lactide-co-glycolide) microspheres were prepared using a modified double emulsion solvent evaporation method for the delivery of the subunit tuberculosis vaccine (Ag85B-ESAT-6), a fusion protein of the immunodominant antigens 6-kDa early secretory antigenic target (ESAT-6) and antigen 85B (Ag85B). Addition of the cationic lipid dimethyl dioctadecylammonium bromide (DDA) and the immunostimulatory trehalose 6,6'-dibehenate (TDB), either separately or in combination, was investigated for the effect on particle size and distribution, antigen entrapment efficiency, in vitro release profiles and in vivo performance. Optimised formulation parameters yielded microspheres within the desired sub-10 mu m range (1.50 +/- 0.13 mu m), whilst exhibiting a high antigen entrapment efficiency (95 +/- 1.2%) and prolonged release profiles. Although the microsphere formulations induced a cell-mediated immune response and raised specific antibodies after immunisation, this was inferior to the levels achieved with liposomes composed of the same adjuvants (DDA-TDB), demonstrating that liposomes are more effective vaccine delivery systems compared with microspheres.