54 resultados para Gaussian process


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The main aim of this paper is to provide a tutorial on regression with Gaussian processes. We start from Bayesian linear regression, and show how by a change of viewpoint one can see this method as a Gaussian process predictor based on priors over functions, rather than on priors over parameters. This leads in to a more general discussion of Gaussian processes in section 4. Section 5 deals with further issues, including hierarchical modelling and the setting of the parameters that control the Gaussian process, the covariance functions for neural network models and the use of Gaussian processes in classification problems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We consider the problem of assigning an input vector bfx to one of m classes by predicting P(c|bfx) for c = 1, ldots, m. For a two-class problem, the probability of class 1 given bfx is estimated by s(y(bfx)), where s(y) = 1/(1 + e-y). A Gaussian process prior is placed on y(bfx), and is combined with the training data to obtain predictions for new bfx points. We provide a Bayesian treatment, integrating over uncertainty in y and in the parameters that control the Gaussian process prior; the necessary integration over y is carried out using Laplace's approximation. The method is generalized to multi-class problems (m >2) using the softmax function. We demonstrate the effectiveness of the method on a number of datasets.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We develop an approach for sparse representations of Gaussian Process (GP) models (which are Bayesian types of kernel machines) in order to overcome their limitations for large data sets. The method is based on a combination of a Bayesian online algorithm together with a sequential construction of a relevant subsample of the data which fully specifies the prediction of the GP model. By using an appealing parametrisation and projection techniques that use the RKHS norm, recursions for the effective parameters and a sparse Gaussian approximation of the posterior process are obtained. This allows both for a propagation of predictions as well as of Bayesian error measures. The significance and robustness of our approach is demonstrated on a variety of experiments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Based on a statistical mechanics approach, we develop a method for approximately computing average case learning curves and their sample fluctuations for Gaussian process regression models. We give examples for the Wiener process and show that universal relations (that are independent of the input distribution) between error measures can be derived.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We develop an approach for sparse representations of Gaussian Process (GP) models (which are Bayesian types of kernel machines) in order to overcome their limitations for large data sets. The method is based on a combination of a Bayesian online algorithm together with a sequential construction of a relevant subsample of the data which fully specifies the prediction of the GP model. By using an appealing parametrisation and projection techniques that use the RKHS norm, recursions for the effective parameters and a sparse Gaussian approximation of the posterior process are obtained. This allows both for a propagation of predictions as well as of Bayesian error measures. The significance and robustness of our approach is demonstrated on a variety of experiments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We consider the problem of assigning an input vector to one of m classes by predicting P(c|x) for c=1,...,m. For a two-class problem, the probability of class one given x is estimated by s(y(x)), where s(y)=1/(1+e-y). A Gaussian process prior is placed on y(x), and is combined with the training data to obtain predictions for new x points. We provide a Bayesian treatment, integrating over uncertainty in y and in the parameters that control the Gaussian process prior the necessary integration over y is carried out using Laplace's approximation. The method is generalized to multiclass problems (m>2) using the softmax function. We demonstrate the effectiveness of the method on a number of datasets.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Large monitoring networks are becoming increasingly common and can generate large datasets from thousands to millions of observations in size, often with high temporal resolution. Processing large datasets using traditional geostatistical methods is prohibitively slow and in real world applications different types of sensor can be found across a monitoring network. Heterogeneities in the error characteristics of different sensors, both in terms of distribution and magnitude, presents problems for generating coherent maps. An assumption in traditional geostatistics is that observations are made directly of the underlying process being studied and that the observations are contaminated with Gaussian errors. Under this assumption, sub–optimal predictions will be obtained if the error characteristics of the sensor are effectively non–Gaussian. One method, model based geostatistics, assumes that a Gaussian process prior is imposed over the (latent) process being studied and that the sensor model forms part of the likelihood term. One problem with this type of approach is that the corresponding posterior distribution will be non–Gaussian and computationally demanding as Monte Carlo methods have to be used. An extension of a sequential, approximate Bayesian inference method enables observations with arbitrary likelihoods to be treated, in a projected process kriging framework which is less computationally intensive. The approach is illustrated using a simulated dataset with a range of sensor models and error characteristics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The assessment of the reliability of systems which learn from data is a key issue to investigate thoroughly before the actual application of information processing techniques to real-world problems. Over the recent years Gaussian processes and Bayesian neural networks have come to the fore and in this thesis their generalisation capabilities are analysed from theoretical and empirical perspectives. Upper and lower bounds on the learning curve of Gaussian processes are investigated in order to estimate the amount of data required to guarantee a certain level of generalisation performance. In this thesis we analyse the effects on the bounds and the learning curve induced by the smoothness of stochastic processes described by four different covariance functions. We also explain the early, linearly-decreasing behaviour of the curves and we investigate the asymptotic behaviour of the upper bounds. The effect of the noise and the characteristic lengthscale of the stochastic process on the tightness of the bounds are also discussed. The analysis is supported by several numerical simulations. The generalisation error of a Gaussian process is affected by the dimension of the input vector and may be decreased by input-variable reduction techniques. In conventional approaches to Gaussian process regression, the positive definite matrix estimating the distance between input points is often taken diagonal. In this thesis we show that a general distance matrix is able to estimate the effective dimensionality of the regression problem as well as to discover the linear transformation from the manifest variables to the hidden-feature space, with a significant reduction of the input dimension. Numerical simulations confirm the significant superiority of the general distance matrix with respect to the diagonal one.In the thesis we also present an empirical investigation of the generalisation errors of neural networks trained by two Bayesian algorithms, the Markov Chain Monte Carlo method and the evidence framework; the neural networks have been trained on the task of labelling segmented outdoor images.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Since wind at the earth's surface has an intrinsically complex and stochastic nature, accurate wind power forecasts are necessary for the safe and economic use of wind energy. In this paper, we investigated a combination of numeric and probabilistic models: a Gaussian process (GP) combined with a numerical weather prediction (NWP) model was applied to wind-power forecasting up to one day ahead. First, the wind-speed data from NWP was corrected by a GP, then, as there is always a defined limit on power generated in a wind turbine due to the turbine controlling strategy, wind power forecasts were realized by modeling the relationship between the corrected wind speed and power output using a censored GP. To validate the proposed approach, three real-world datasets were used for model training and testing. The empirical results were compared with several classical wind forecast models, and based on the mean absolute error (MAE), the proposed model provides around 9% to 14% improvement in forecasting accuracy compared to an artificial neural network (ANN) model, and nearly 17% improvement on a third dataset which is from a newly-built wind farm for which there is a limited amount of training data. © 2013 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For neural networks with a wide class of weight-priors, it can be shown that in the limit of an infinite number of hidden units the prior over functions tends to a Gaussian process. In this paper analytic forms are derived for the covariance function of the Gaussian processes corresponding to networks with sigmoidal and Gaussian hidden units. This allows predictions to be made efficiently using networks with an infinite number of hidden units, and shows that, somewhat paradoxically, it may be easier to compute with infinite networks than finite ones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thrust of this report concerns spline theory and some of the background to spline theory and follows the development in (Wahba, 1991). We also review methods for determining hyper-parameters, such as the smoothing parameter, by Generalised Cross Validation. Splines have an advantage over Gaussian Process based procedures in that we can readily impose atmospherically sensible smoothness constraints and maintain computational efficiency. Vector splines enable us to penalise gradients of vorticity and divergence in wind fields. Two similar techniques are summarised and improvements based on robust error functions and restricted numbers of basis functions given. A final, brief discussion of the application of vector splines to the problem of scatterometer data assimilation highlights the problems of ambiguous solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For neural networks with a wide class of weight priors, it can be shown that in the limit of an infinite number of hidden units, the prior over functions tends to a gaussian process. In this article, analytic forms are derived for the covariance function of the gaussian processes corresponding to networks with sigmoidal and gaussian hidden units. This allows predictions to be made efficiently using networks with an infinite number of hidden units and shows, somewhat paradoxically, that it may be easier to carry out Bayesian prediction with infinite networks rather than finite ones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In developing neural network techniques for real world applications it is still very rare to see estimates of confidence placed on the neural network predictions. This is a major deficiency, especially in safety-critical systems. In this paper we explore three distinct methods of producing point-wise confidence intervals using neural networks. We compare and contrast Bayesian, Gaussian Process and Predictive error bars evaluated on real data. The problem domain is concerned with the calibration of a real automotive engine management system for both air-fuel ratio determination and on-line ignition timing. This problem requires real-time control and is a good candidate for exploring the use of confidence predictions due to its safety-critical nature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In many problems in spatial statistics it is necessary to infer a global problem solution by combining local models. A principled approach to this problem is to develop a global probabilistic model for the relationships between local variables and to use this as the prior in a Bayesian inference procedure. We show how a Gaussian process with hyper-parameters estimated from Numerical Weather Prediction Models yields meteorologically convincing wind fields. We use neural networks to make local estimates of wind vector probabilities. The resulting inference problem cannot be solved analytically, but Markov Chain Monte Carlo methods allow us to retrieve accurate wind fields.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Bayesian procedure for the retrieval of wind vectors over the ocean using satellite borne scatterometers requires realistic prior near-surface wind field models over the oceans. We have implemented carefully chosen vector Gaussian Process models; however in some cases these models are too smooth to reproduce real atmospheric features, such as fronts. At the scale of the scatterometer observations, fronts appear as discontinuities in wind direction. Due to the nature of the retrieval problem a simple discontinuity model is not feasible, and hence we have developed a constrained discontinuity vector Gaussian Process model which ensures realistic fronts. We describe the generative model and show how to compute the data likelihood given the model. We show the results of inference using the model with Markov Chain Monte Carlo methods on both synthetic and real data.