55 resultados para Frequency response curve
Resumo:
We investigate experimentally the fundamental characteristics of space-charge waves excited in a photorefractive crystal of Bi12SiO20. Features such as their transient rise and decay as well as their steady-state frequency response are investigated. Based on this, we find the dependence of the space-charge waves' quality factor on spatial frequency and electric-field biasing. The experimental findings are compared with the linear space-charge wave theory developed previously by Sturman et al. [J. Opt. Sec. Am. B 10, 1919 (1993)].
Resumo:
The importance of endogenous rhythms in the photoperiodic control of the annual reproduction cycle in female rainbow trout was investigated. The effect of photoperiod regimes on the different stages of maturation was assessed by recording the timing of ovulation and from quantifying associated changes in serum oestradiol-17,testosterone and total calcium. Maintained under constant 6L:18D and constant temperature for up to four years, rainbow trout exhibited an endogenous rhythm of maturation with a periodicity of approximately one year. This rhythm of maturation appears to be driven by an autonomous circannual oscillator or clock which can be dissociated from the neuroendocrine mechanisms controlling gonadal maturation. Under conditions of constant 18L:6D or LL the periodicity of the maturation rhythm was 5.5-6 months; it is suggested that this periodicity may be caused by a splitting or uncoupling of at least two circannual clocks involved in the control of maturation. Abrupt changes in the length of the photoperiod act as a zeitgeber to entrain the endogenous rhythm of maturation. Whether the timing of maturation is advanced or delayed depends primarily on the direction of the change in photoperiod and its timing in relation to the phase of the rhythm, with the magnitude of the alteration in photoperiod having only a supplementary effect. The effect of specific changes in photoperiod on the entrainment of the maturation cycle can be described in terms of a phase-response curve. Photic information is transduced, probably by the pineal gland, into a daily rhythm of melatonin; exposure of rainbow trout to skeleton and resonance photoperiod regimes indicated that daylength measurement is effected by endogenous circadian clock(s) rather than by hour-glass mechanisms. A gating mechanism is closely associated with the circannual clock which determines the timing of onset of maturation in virgin female rainbow trout, only allowing fish that have attained a threshold stage of development to undergo gonadal maturation. Collectively the results support the hypothesis that the female rainbow trout exhibits an endogenous circannual rhythm of maturation which can be entrained by changes in photoperiod.
Resumo:
The antioxidants butylated hydroxytoluene (BHT, 1 mM) and d-α-tocopherol (10 μM) completely attenuated protein degradation in murine myotubes in response to both proteolysis-inducing factor (PIF) and angiotensin II (Ang II), suggesting that the formation of reactive oxygen species (ROS) plays an important role in this process. Both PIF and Ang II induced a rapid and transient increase in ROS formation in myotubes, which followed a parabolic dose-response curve, similar to that for total protein degradation. Antioxidant treatment attenuated the increase in expression and activity of the ubiquitin-proteasome proteolytic pathway by PIF and Ang II, by preventing the activation of the transcription factor nuclear factor-κB (NF-κB), through inhibition of phosphorylation of the NF-κB inhibitor protein (I-κB) and its subsequent degradation. ROS formation by both PIF and Ang II was attenuated by diphenyleneiodonium (10 μM), suggesting that it was mediated through the NADPH oxidase system. ROS formation was also attenuated by trifluoroacetyl arachidonic acid (10 μM), a specific inhibitor of cytosolic phospholipase A2, U-73122 (5 μM) and D609 (200 μM), inhibitors of phospholipase C and calphostin C (300 nM), a highly specific inhibitor of protein kinase C (PKC), all known activators of NADPH oxidase. Myotubes containing a dominant-negative mutant of PKC did not show an increase in ROS formation in response to either PIF or Ang II. The two Rac1 inhibitors W56 (200 μM) and NSC23766 (10 μM) also attenuated both ROS formation and protein degradation induced by both PIF and Ang II. Rac1 is known to mediate signalling between the phosphatidylinositol-3 kinase (PI-3K) product and NADPH oxidase, and treatment with LY24002 (10 μM), a highly selective inhibitor of PI-3K, completely attenuated ROS production in response to both PIF and Ang II, and inhibited total protein degradation, while the inactive analogue LY303511 (100 μM) had no effect. ROS formation appears to be important in muscle atrophy in cancer cachexia, since treatment of weight losing mice bearing the MAC16 tumour with d-α-tocopherol (1 mg kg- 1) attenuated protein degradation and increased protein synthesis in skeletal muscle. © 2007 Elsevier Inc. All rights reserved.
Resumo:
Angiotensin I and II have been shown to directly induce protein degradation in skeletal muscle through an increased activity and expression of the ubiquitin-proteasome proteolytic pathway. This investigation determines the role of the nuclear transcription factor nuclear factor-κB (NF-κB) in this process. Using murine myotubes as a surrogate model system both angiotensin I and II were found to induce activation of protein kinase C (PKC), with a parabolic dose-response curve similar to the induction of total protein degradation. Activation of PKC was required for the induction of proteasome expression, since calphostin C, a highly specific inhibitor of PKC, attenuated both the increase in total protein degradation and in proteasome expression and functional activity increased by angiotensin II. PKC is known to activate I-κB kinase (IKK), which is responsible for the phosphorylation and subsequent degradation of I-κB. Both angiotensin I and II induced an early decrease in cytoplasmic I-κB levels followed by nuclear accumulation of NF-κB. Using an NF-κB luciferase construct this was shown to increase transcriptional activation of NF-κB regulated genes. Maximal luciferase expression was seen at the same concentrations of angiotensin I/II as those inducing protein degradation. Total protein degradation induced by both angiotensin I and II was attenuated by resveratrol, which prevented nuclear accumulation of NF-κB, confirming that activation of NF-κB was responsible for the increased protein degradation. These results suggest that induction of proteasome expression by angiotensin I/II involves a signalling pathway involving PKC and NF-κB. © 2005 Elsevier Inc. All rights reserved.
Resumo:
Although muscle atrophy is common to a number of disease states there is incomplete knowledge of the cellular mechanisms involved. In this study murine myotubes were treated with the phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA) to evaluate the role of protein kinase C (PKC) as an upstream intermediate in protein degradation. TPA showed a parabolic dose-response curve for the induction of total protein degradation, with an optimal effect at a concentration of 25 nM, and an optimal incubation time of 3 h. Protein degradation was attenuated by co-incubation with the proteasome inhibitor lactacystin (5 μM), suggesting that it was mediated through the ubiquitin-proteasome proteolytic pathway. TPA induced an increased expression and activity of the ubiquitin-proteasome pathway, as evidenced by an increased functional activity, and increased expression of the 20S proteasome α-subunits, the 19S subunits MSS1 and p42, as well as the ubiquitin conjugating enzyme E214k, also with a maximal effect at a concentration of 25 nM and with a 3 h incubation time. There was also a reciprocal decrease in the cellular content of the myofibrillar protein myosin. TPA induced activation of PKC maximally at a concentration of 25 nM and this effect was attenuated by the PKC inhibitor calphostin C (300 nM), as was also total protein degradation. These results suggest that stimulation of PKC in muscle cells initiates protein degradation through the ubiquitin-proteasome pathway. TPA also induced degradation of the inhibitory protein, I-κBα, and increased nuclear accumulation of nuclear factor-κB (NF-κB) at the same time and concentrations as those inducing proteasome expression. In addition inhibition of NF-κB activation by resveratrol (30 μM) attenuated protein degradation induced by TPA. These results suggest that the induction of proteasome expression by TPA may involve the transcription factor NF-κB. © 2005 Elsevier Inc. All rights reserved.
Resumo:
The ubiquitin-proteasome proteolytic pathway plays a major role in degradation of myofibrillar proteins in skeletal muscle during cancer cachexia. The end-product of this pathway is oligopeptides and these are degraded by the extralysomal peptidase tripeptidyl-peptidase II (TPPII) together with various aminopeptidases to form tripeptides and amino acids. To investigate if a relationship exists between the activity of the proteasome and TPPII, functional activities have been measured in gastrocnemius muscle of mice bearing the MAC16 tumour, and with varying extents of weight loss. TPPII activity was quantitated using the specific substrate Ala-Ala-Phe-7-amido-4-methylcoumarin, while proteasome activity was determined as the 'chymotrypsin-like' enzyme activity. Both proteasome proteolytic activity and TPPII activity increased in parallel with increasing weight loss, reaching a maximum at 16% weight loss, after which there was a progressive decrease in activity for both proteases with increasing weight loss. In murine myotubes, proteolysis-inducing factor, which is a sulphated glycoprotein produced by cachexia-inducing tumours, induced an increase in activity of both proteasome and TPPII, with an identical dose-response curve, and both activities were inhibited by eicosapentaenoic acid. These results suggest that the activities of both the proteasome and TPPII are regulated in a parallel manner in cancer cachexia, and that both are induced by the same factor and probably have the same intracellular signalling pathways and transcription factors. © 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The ability of angiotensin I (Ang I) and II (Ang II) to induce directly protein degradation in skeletal muscle has been studied in murine myotubes. Angiotensin I stimulated protein degradation with a parabolic dose-response curve and with a maximal effect between 0.05 and 0.1 μM. The effect was attenuated by coincubation with the angiotensin-converting enzyme (ACE) inhibitor imidaprilat, suggesting that angiotensin I stimulated protein degradation through conversion to Ang II. Angiotensin II also stimulated protein breakdown with a similar dose-response curve, and with a maximal effect between 1 and 2.5 μM. Total protein degradation, induced by both Ang I and Ang II, was attenuated by the proteasome inhibitors lactacystin (5 μM) and MG132 (10 μM), suggesting that the effect was mediated through upregulation of the ubiquitin-proteasome proteolytic pathway. Both Ang I and Ang II stimulated an increased proteasome 'chymotrypsin-like' enzyme activity as well as an increase in protein expression of 20S proteasome α-subunits, the 19S subunits MSSI and p42, at the same concentrations as those inducing protein degradation. The effect of Ang I was attenuated by imidaprilat, confirming that it arose from conversion to Ang II. These results suggest that Ang II stimulates protein degradation in myotubes through induction of the ubiquitin-proteasome pathway. Protein degradation induced by Ang II was inhibited by insulin-like growth factor and by the polyunsaturated fatty acid, eicosapentaenoic acid. These results suggest that Ang II has the potential to cause muscle atrophy through an increase in protein degradation. The highly lipophilic ACE inhibitor imidapril (Vitor™) (30 mg kg-1) attenuated the development of weight loss in mice bearing the MAC16 tumour, suggesting that Ang II may play a role in the development of cachexia in this model. © 2005 Cancer Research.
Resumo:
Aim: To determine whether eyes implanted with the Lenstec KH-3500 "accommodative" intraocular lenses (IOLs) have improved subjective and objective focusing performance compared to a standard monofocal IOLs. Methods: 28 participants were implanted monocularly with a KH-3500 " accommodative" IOL and 20 controls with a Softec1 IOL. Outcome measures of refraction, visual acuity, subjective amplitude of accommodation, objective accommodative stimulus response curve, aberrometry, and Scheimpflug imaging were taken at ∼3 weeks and repeated after 6 months. Results: Best corrected acuity with the KH-3500 was 0.06 (SD 0.13) logMAR at distance and 0.58 (0.20) logMAR at near. Accommodation was 0.39 (0.53) D measured objectively and 3.1 (1.6) D subjectively. Higher order aberrations were 0.87 (0.85) μm and lower order were 0.24 (0.39) μm. Posterior subcapsular light scatter was 0.95% (1.37%) greater than IOL clarity. In comparison, all control group measures were similar except objective (0.17 (0.13) D; p = 0.032) and subjective (2.0 (0.9) D; p = 0.009) amplitude of accommodation. Six months following surgery, posterior subcapsular scatter had increased (p<0.01) in the KH-3500 implanted subjects and near word acuity had decreased (p<0.05). Conclusions: The objective accommodating effects of the KH-3500 IOL appear to be limited, although the subjective and objective accommodative range is significantly increased compared to control subjects implanted with conventional IOLs. However, this "accommodative" ability of the lens appears to have decreased by 6 months post-surgery.
Resumo:
PURPOSE. To compare the objective accommodative amplitude and dynamics of eyes implanted with the one-compartment-unit (1CU; HumanOptics AG, Erlangen, Germany) accommodative intraocular lenses (IOLs) with that measured subjectively. METHODS. Twenty eyes with a 1CU accommodative IOL implanted were refracted and distance and near acuity measured with a logMAR (logarithm of the minimum angle of resolution) chart. The objective accommodative stimulus-response curve for static targets between 0.17 and 4.00 D accommodative demand was measured with the SRW-5000 (Shin-Nippon Commerce Inc., Tokyo, Japan) and PowerRefractor (PlusOptiX, Nürnberg, Germany) autorefractors. Continuous objective recording of dynamic accommodation was measured with the SRW-5000, with the subject viewing a target moving from 0 to 2.50 D at 0.3 Hz through a Badal lens system. Wavefront aberrometry measures (Zywave; Bausch & Lomb, Rochester, NY) were made through undilated pupils. Subjective amplitude of accommodation was measured with the RAF (Royal Air Force accommodation and vergence measurement) rule. RESULTS. Four months after implantation best-corrected acuity was -0.01 ± 0.16 logMAR at distance and 0.60 ± 0.09 logMAR at near. Objectively, the static amplitude of accommodation was 0.72 ± 0.38 D. The average dynamic amplitude of accommodation was 0.71 ± 0.47 D, with a lag behind the target of 0.50 ± 0.48 seconds. Aberrometry showed a decrease in power of the lens-eye combination from the center to the periphery in all subjects (on average, -0.38 ± 0.28 D/mm). Subjective amplitude of accommodation was 2.24 ± 0.42 D. Two years after 1CU implantation, refractive error and distance visual acuity remained relatively stable, but near visual acuity, and the subjective and objective amplitudes of accommodation decreased. CONCLUSIONS. The objective accommodating effects of the 1CU lens appear to be limited, although patients are able to track a moving target. Subjective and objective accommodation was reduced at the 2-year follow-up. The greater subjective amplitude of accommodation is likely to result from the eye's depth of focus of and the aspheric nature of the IOL. Copyright © Association for Research in Vision and Ophthalmology.
Resumo:
This work is part of a bigger project which aims to research the potential development of commercial opportunities for the re-use of batteries after their use in low carbon vehicles on an electricity grid or microgrid system. There are three main revenue streams (peak load lopping on the distribution Network to allow for network re-enforcement deferral, National Grid primary/ secondary/ high frequency response, customer energy management optimization). These incomes streams are dependent on the grid system being present. However, there is additional opportunity to be gained from also using these batteries to provide UPS backup when the grid is no longer present. Most UPS or ESS on the market use new batteries in conjunction with a two level converter interface. This produces a reliable backup solution in the case of loss of mains power, but may be expensive to implement. This paper introduces a modular multilevel cascade converter (MMCC) based ESS using second-life batteries for use on a grid independent industrial plant without any additional onsite generator as a potentially cheaper alternative. The number of modules has been designed for a given reliability target and these modules could be used to minimize/eliminate the output filter. An appropriate strategy to provide voltage and frequency control in a grid independent system is described and simulated under different disturbance conditions such as load switching, fault conditions or a large motor starting. A comparison of the results from the modular topology against a traditional two level converter is provided to prove similar performance criteria. The proposed ESS and control strategy is an acceptable way of providing backup power in the event of loss of grid. Additional financial benefit to the customer may be obtained by using a second life battery in this way.
Resumo:
The modern grid system or the smart grid is likely to be populated with multiple distributed energy sources, e.g. wind power, PV power, Plug-in Electric Vehicle (PEV). It will also include a variety of linear and nonlinear loads. The intermittent nature of renewable energies like PV, wind turbine and increased penetration of Electric Vehicle (EV) makes the stable operation of utility grid system challenging. In order to ensure a stable operation of the utility grid system and to support smart grid functionalities such as, fault ride-through, frequency response, reactive power support, and mitigation of power quality issues, an energy storage system (ESS) could play an important role. A fast acting bidirectional energy storage system which can rapidly provide and absorb power and/or VARs for a sufficient time is a potentially valuable tool to support this functionality. Battery energy storage systems (BESS) are one of a range suitable energy storage system because it can provide and absorb power for sufficient time as well as able to respond reasonably fast. Conventional BESS already exist on the grid system are made up primarily of new batteries. The cost of these batteries can be high which makes most BESS an expensive solution. In order to assist moving towards a low carbon economy and to reduce battery cost this work aims to research the opportunities for the re-use of batteries after their primary use in low and ultra-low carbon vehicles (EV/HEV) on the electricity grid system. This research aims to develop a new generation of second life battery energy storage systems (SLBESS) which could interface to the low/medium voltage network to provide necessary grid support in a reliable and in cost-effective manner. The reliability/performance of these batteries is not clear, but is almost certainly worse than a new battery. Manufacturers indicate that a mixture of gradual degradation and sudden failure are both possible and failure mechanisms are likely to be related to how hard the batteries were driven inside the vehicle. There are several figures from a number of sources including the DECC (Department of Energy and Climate Control) and Arup and Cenex reports indicate anything from 70,000 to 2.6 million electric and hybrid vehicles on the road by 2020. Once the vehicle battery has degraded to around 70-80% of its capacity it is considered to be at the end of its first life application. This leaves capacity available for a second life at a much cheaper cost than a new BESS Assuming a battery capability of around 5-18kWhr (MHEV 5kWh - BEV 18kWh battery) and approximate 10 year life span, this equates to a projection of battery storage capability available for second life of >1GWhrs by 2025. Moreover, each vehicle manufacturer has different specifications for battery chemistry, number and arrangement of battery cells, capacity, voltage, size etc. To enable research and investment in this area and to maximize the remaining life of these batteries, one of the design challenges is to combine these hybrid batteries into a grid-tie converter where their different performance characteristics, and parameter variation can be catered for and a hot swapping mechanism is available so that as a battery ends it second life, it can be replaced without affecting the overall system operation. This integration of either single types of batteries with vastly different performance capability or a hybrid battery system to a grid-tie 3 energy storage system is different to currently existing work on battery energy storage systems (BESS) which deals with a single type of battery with common characteristics. This thesis addresses and solves the power electronic design challenges in integrating second life hybrid batteries into a grid-tie energy storage unit for the first time. This study details a suitable multi-modular power electronic converter and its various switching strategies which can integrate widely different batteries to a grid-tie inverter irrespective of their characteristics, voltage levels and reliability. The proposed converter provides a high efficiency, enhanced control flexibility and has the capability to operate in different operational modes from the input to output. Designing an appropriate control system for this kind of hybrid battery storage system is also important because of the variation of battery types, differences in characteristics and different levels of degradations. This thesis proposes a generalised distributed power sharing strategy based on weighting function aims to optimally use a set of hybrid batteries according to their relative characteristics while providing the necessary grid support by distributing the power between the batteries. The strategy is adaptive in nature and varies as the individual battery characteristics change in real time as a result of degradation for example. A suitable bidirectional distributed control strategy or a module independent control technique has been developed corresponding to each mode of operation of the proposed modular converter. Stability is an important consideration in control of all power converters and as such this thesis investigates the control stability of the multi-modular converter in detailed. Many controllers use PI/PID based techniques with fixed control parameters. However, this is not found to be suitable from a stability point-of-view. Issues of control stability using this controller type under one of the operating modes has led to the development of an alternative adaptive and nonlinear Lyapunov based control for the modular power converter. Finally, a detailed simulation and experimental validation of the proposed power converter operation, power sharing strategy, proposed control structures and control stability issue have been undertaken using a grid connected laboratory based multi-modular hybrid battery energy storage system prototype. The experimental validation has demonstrated the feasibility of this new energy storage system operation for use in future grid applications.
Resumo:
We show theoretically and experimentally a mechanismbehind the emergence of wide or bimodal protein distributions in biochemical networks with nonlinear input-output characteristics (the dose-response curve) and variability in protein abundance. Large cell-to-cell variation in the nonlinear dose-response characteristics can be beneficial to facilitate two distinct groups of response levels as opposed to a graded response. Under the circumstances that we quantify mathematically, the two distinct responses can coexist within a cellular population, leading to the emergence of a bimodal protein distribution. Using flow cytometry, we demonstrate the appearance of wide distributions in the hypoxia-inducible factor-mediated response network in HCT116 cells. With help of our theoretical framework, we perform a novel calculation of the magnitude of cell-to-cell heterogeneity in the dose-response obtained experimentally. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Resumo:
Purpose: To compare flicker-induced retinal vessel diameter changes in varying age groups with low cardiovascular risk. Methods: Retinal vascular reactivity to flicker light was assessed by means of dynamic retinal vessel analysis in 57 participants aged 19-30 years, 75 participants aged 31-50 years and 62 participants aged 51-70 years participants. Other assessments included carotid intima-media thickness (c-IMT), augmentation index (AIx), blood pressure profiles, blood lipid metabolism markers and Framingham risk scores (FRS). Results: Retinal arterial dilation amplitude (DA) and postflicker percentage constriction (MC%) were significantly decreased in the oldest group compared to the middle-aged (p = 0.028; p = 0.021) and youngest group (p = 0.003; p = 0.026). The arterial constriction slope (Slope
Resumo:
This paper investigates the impact that electric vehicle uptake will have on the national electricity demand of Great Britain. Data from the National Travel Survey, and the Coventry and Birmingham Low Emissions Demonstration (CABLED) are used to model an electrical demand profile in a future scenario of significant electric vehicle market penetration. These two methods allow comparison of how conventional cars are currently used, and the resulting electrical demand with simple substitution of energy source, with data showing how electric vehicles are actually being used at present. The report finds that electric vehicles are unlikely to significantly impact electricity demand in GB. The paper also aims to determine whether electric vehicles have the potential to provide ancillary services to the grid operator, and if so, the capacity for such services that would be available. Demand side management, frequency response and Short term Operating Reserve (STOR) are the services considered. The report finds that electric cars are unlikely to provide enough moveable demand peak shedding to be worthwhile. However, it is found that controlling vehicle charging would provide sufficient power control to viably act as frequency response for dispatch by the transmission system operator. This paper concludes that electric vehicles have technical potential to aid management of the transmission network without adding a significant demand burden. © 2013 IEEE.
Resumo:
The current platform of conventional cardiovascular risk assessments tends to forsake the importance of endothelial function - a key biological mechanism by which cardiovascular risk factors exert their propensity for adverse vascular events. Moreover, the presence and severity of endothelial dysfunction in ‘low-risk’ individuals suggests considerable variability in pre-clinical risk that could potentially be detected well before the onset of disease. The aim of the present thesis was to investigate the presence and impact of retinal vascular dysfunction, as a barometer of endothelial function, in otherwise healthy individuals with one or more cardiovascular risk factors, but low to moderate cardiovascular risk. Systemic circulatory influences on retinal vascular function were also evaluated. The principle sections and findings of this work are: 1. Ageing effect on retinal vascular function • In low-risk individuals, there are age differences in retinal vascular function throughout the entire functional response curve for arteries and veins. Gender differences mainly affect the dilatory phase and are only present in young individuals. 2. Retinal vascular function in healthy individuals with a family history of cardiovascular disease • In low-risk individuals with a family history of cardiovascular disease, impairments in microvascular function at the retinal level correlate with established plasma markers for cardiovascular risk. 3. Ethnic differences in retinal vascular function • When compared to age-matched White Europeans, in low-risk middle-aged South Asians, there are impairments in retinal vascular function that correlate with established cardiovascular risk indicators. 4. Systemic circulatory influences on retinalµvascular function • Systemic antioxidant capacity (redox index) and plasma markers for cardiovascular risk (lipids) influence retinal microvascular function at both arterial and venous levels. 5. Retinal vascular function in individuals with obstructive sleep apnoea: a preliminarystudy • Patients with moderate to severe sleep apnoea exhibit attenuated retinal vascular function.